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Abstract

We present a color segmentation approach based on a two-dimensional color map derived from the 

input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of 

biomarkers. In these images, because of color variation due to inconsistencies in experimental 

procedures and lighting conditions, the segmentation used to analyze biological features is usually 

ad-hoc. Many algorithms like K-means use a single metric to segment the image into different 

color classes and rarely provide users with powerful color control. Our 2D color map interactive 

segmentation technique based on human color perception information and the color distribution of 

the input image, enables user control without noticeable delay. Our methodology works for 

different staining types and different types of cancer tissue images. Our proposed method’s results 

show good accuracy with low response and computational time making it a feasible method for 

user interactive applications involving segmentation of histological images.

INTRODUCTION

Segmentation of colored images is a classic problem in digital image processing. Images 

with sharp color distinctions can be easily segmented by using one of several segmentation 

algorithms available [1]. However, natural and biological stained color images lack high 

contrast discontinuities. In addition, there are variations among staining colors or light 

conditions. Thus, using computers to conduct color quantification becomes increasingly 

important in clinical diagnosis, and emerges as a new field called Computer Assisted 

Diagnosis (CAD). One of the challenges in CAD is how to perform precise color 

segmentation as perceived by humans.

In gray-scale image segmentation, discontinuity-based techniques [2] [3] [4], partition an 

image by detecting isolated points, lines and edges caused by sudden changes in gray levels. 

Homogeneity-based methods perform thresholding, clustering, region growing, and region 

splitting and merging [4]. Color is a feature of an object’s surface. Distinctive colors form 

peaks in color histograms. Because color images are usually measured and represented by 

three color components: red green and blue, (R,G,B), most color segmentation approaches 

just extend 1-color gray intensity processing to 3-colors [3], and are generally based on 

either histograms or clustering techniques. In clustering-based techniques, pixels are 

HHS Public Access
Author manuscript
Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 April 06.

Published in final edited form as:
Proc IEEE Int Symp Biomed Imaging. 2012 May ; 2012: 178–181. doi:10.1109/ISBI.2012.6235513.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



grouped based on a distance metric and the color values of the points. The spread within a 

cluster is mainly determined by color variations due to shading and device noise. An 

example is the K-means algorithm, which iteratively computes each cluster’s membership 

and mean color values until convergence. In general, the K-means algorithm suffers from the 

local minima problem and being an un-supervised algorithm lack user control. In [1][5], the 

authors have shown that K-means clustering with user-provided seed points can result in 

better segmentation when compared to fully automated “unsupervised” K-means. Generally, 

clinical applications prefer accuracy over automation, if the segmentation results with user 

interaction can be produced in real time; they will be the top design choice. Under this 

guideline, i.e. to maximize the user feedback while performing the computation in real time, 

we have designed a color visualization and segmentation system.

Due to the complexity and heterogeneity of biomedical images, generic solutions are quite 

uncommon. A survey of biomedical image processing reveals a number of application-

specific color segmentation techniques [6] [7] [8]. The user’s perception is another 

important aspect for any color segmentation technique. The color models and the 

differentiation metric, incorporating human perception models, to separate different classes 

are preferred by the user as it co-relates results more closely to their knowledge base. A 

perceptual color segmentation algorithm [9] segmenting RGB color space into ten color 

categories using Munsell and CIELUV color models and dominant color detection in an 

image by finding ridges in the color distribution [10] are examples of incorporating human 

perception models to achieve better segmentation. The user’s perception of color can also be 

incorporated by introducing interactivity and user feedback. Interactive segmentation [11], in 

which the “user is in the segmentation loop,” allows the addition and removal of regions of 

interest by the user and user selected seed points segmentation [12] are the few examples.

We designed our color segmentation tool to be interactive and to incorporate color constancy 

perceived by humans. In addition, it offers visualization of 3D RGB colors in a 2D space 

that covers the pixel frequency, color composition and color class clustering (co-

localization) of the images, selecting several color class samples in a time frame equivalent 

to single seed point selection, enhanced user control and compatibility with different types 

of cancer images stained with different colored dyes.

METHODS

Segmentation in color space is challenging because it is not easy to find a similarity metric 

that translates the user’s perception of 3D color space to a single dimension decision 

parameter. Even with high-speed computer graphics, it is difficult for users to select or 

encapsulate clusters directly in a 3D space, such as the RGB space. In this work, we reduce 

this complexity to provide an interactive environment in 2D. For data visualization we used 

Hue (H) and Saturation (S) plane as mapping space where all the pixels in the test image are 

mapped close to other pixels which have similar HS values (co-localization). It may be noted 

that the color space is not being used to do the dimensionality reduction. It is only used to 

co-localize the pixels e.g. using HS plane, all pixels with same Hue and Saturation values 

will be mapped close to each other irrespective of intensity. The pixels displayed will still 

appear with their original intensity value i.e. the pixels in color map show all components 
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(RGB). We tested different visualization schemes using different images and selected HS 

plane for color maps as it showed better spread and easier interaction. One such example is 

shown in Figure 1.

Direct mapping of the pixels to visualization space has certain limitations. Because most 

image formats support 24-bit color values, the probability of multiple pixels mapping to a 

single location is significant. In addition, if the visualization space image size is large in 

comparison to only 255 (8 bit) possible values along one axis, blank rows and columns 

remain, as shown in Figure 2. We can also see that Figure 2 does not give a true 

representation of how frequently a specific shade of color is represented in the input image. 

We tried different methods to generate color map by arranging pixels in order to present the 

user with a true representative of the image in real time for interactive visualization. We 

came up with this technique termed as ‘Random Spread Visualization’ which is non-iterative 

method and fast enough (<30 sec) for real time visualization and interaction.

2.1. Random Spread Visualization

2D visualization shown in Figure 2 loses the information of all the pixels which map to same 

location. If these pixels are mapped to the empty places in the near vicinity, the color map 

generated in such a manner, gives a better representation of pixel co-localization and 

frequency of occurrence. To achieve this, rather than finding an empty location for every 

pixel, which is a computationally intensive operation, each pixel is mapped to a location 

with a random offset which is approximately 5% of the color map largest dimension. The 

offset is small enough so that the pixels belonging to a similar class are mapped close to 

each other. Few pixels may overwrite others but the zones of frequently occurring pixels 

filling earlier than others can be seen as a measure of co-localization. Figure 3 displays the 

original image and the spread of pixels in the corresponding visualization scheme. This 

visualization scheme is limited in displaying the true frequency of pixels, but area, along 

with the pixel density (compactness of color map), represents how frequently pixels of the 

similar color occur in the input image. For example, the scarcity of red and purple color in 

the input image, as compared to pink and yellow color, is demonstrated by the thick 

localization of pink and yellowish color in Figure 3(b).

The users are presented with this 2D color space visualization of (Figure 3b) to 

approximately mark the areas (Figure 3c), using the mouse, where pixels should be grouped 

together as a single color class. This zone marking is then used to segment the color image. 

The segmented image (Figure 3d) is completely dependent on the color ranges specified. 

Closed curves of any shape and size are acceptable and any number of color ranges can be 

specified, thus providing user flexibility.

To compare the segmentation results based on our color map we used level sets algorithm 

and few semi-supervised variants of K-means algorithm. We provide a brief description of 

these methods before presenting the segmentation results.

2.2. K-means Variants

Seeded K-means (SK-means) is our semi supervised variant for standard K-means [13]. 

Standard K-means is an unsupervised algorithm. Even initializing the algorithm with seeds 
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points may help early convergence but resulting final classification may not be anywhere 

close to starting seed points or the user’s perception. SK-means utilizes user provided seed 

points for mean initialization as well as anchor point to restrict excessive mean movement to 

incorporate user’s perception. During the iterative processes of mean computation, 

association of each point is determined based on its distance from new mean as well as 

starting seed point.

In SK-means, we split N data points x(n), in an I dimensional space, into K clusters with 

means m(k) and initial seed points s(k). Each vector x has I components xi and its distance 

from kth mean and kth seed point is given by

At start of SK-means, all means m(k) are assigned seed point values s(k) i.e. m(k)=s(k). In the 

assignment step, each data point n is assigned to the nearest cluster based on minimization 

d(n)k which includes both the distance from the current cluster mean and the cluster seed 

point. The new assignment of clusters for all points is given by

All the data points x(n)assigned to a cluster C form part of its responsibility and is given by 

the responsibility indicator r.

In update step the updated means are computed as

Repeat the assignment step and update step until the change in mean assignment is below a 

threshold.

Multi-seeded K-means (MSK-means) is similar to SK-means except that each class is 

subdivided into multiple subclasses. This helps in better user feedback by providing more 

number of seed points (one per subclass). Intra-class variations can be captured by 

corresponding variation in the selected seed points. After the classification process the 

subclasses are merged back to generate main class labels.

Weighted SK-means (WSK-means) variant of SK-means allows user to change the 

classification results with the help of sliders bars in a GUI. The original equation of SK-

means is modified as

Chaudry et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where Wk is the weight parameter adjusted by the slider control.

The user keeps manipulating the sliders controls visualizing the segmentation results in real 

time until desired results are achieved.

A better comparison of the aforementioned algorithms can be done using the visualization in 

Figure 4. It may be noted that in actual practice all algorithms except color map utilize 3D 

space for classification.

TESTING AND COMPARISONS

To best of our knowledge, no histological image data is available where each pixel is labeled 

that can be used as a ground truth for testing different algorithms. In the absence of such a 

dataset, we tested our algorithm for H&E, IHC stained biopsy tissue images of renal cell 

carcinoma and head & neck cancer. We devised a strategy to compare the accuracies of afore 

mentioned algorithms. We consider WSK-means algorithm results as a reference, in the 

absence of ground truth, since it provides interface to the user to update classification results 

until the best perceived segmentation is achieved. To support our decision, we used the level 

sets algorithm as the second reference. Our level sets implementation, based on the gray 

level intensity cost function, is suited best to segment the dark stained nuclei in the image. 

Comparing only this class we were able to show that accuracies above 95% can be obtained 

which are close to optimum as the two algorithms inherently differ from each other.

Having verified our reference results, we used them to conduct a human interaction study to 

compare the performance and accuracy of other algorithms under consideration. Our study 

involved eight users with varying background from new to frequent users of histology 

images. We used six H&E stained images of Renal Cell Carcinoma (RCC) images which 

were divided in two groups of 512×512 and 1024×1024 pixels to compare the variation in 

computational cost with image size. The users were presented with the previously described 

2D color space visualization of (Figure 3b) and were prompted to approximately mark the 

areas where pixels can be grouped together as a single color class. For SK-means, the users 

mark seed points on the test image which best represents each class while in MSK-means 

user select multiple seeds per class to capture intra-class variation. The user interaction time 

including computational time of all the algorithms was recorded and all the algorithms were 

compared for performance and accuracy.

RESULTS AND DISCUSSION

The performance results (Table-1 and Figure 5) show that random spread color map is faster 

than MSK-means and the average time taken by the user is less than 30 seconds per image, 

which is reasonable for most applications. Color map performance advantage, being a non-

iterative algorithm, becomes apparent when the image size becomes large. The 
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computational time for both SK-means and MSK-means time nearly doubled for larger 

images and only increased fractionally in case of color map segmentation.

To compare accuracy of segmented images either region-based or pixel-based metrics are 

used [14]. In our image data we are interested in texture information inside the objects 

(nuclei) so we compared pixel labels from each segmented image. We used class accuracy, 

commission error and omission error as our evaluation metrics. The segmentation accuracy 

results are shown in table-2. As mentioned earlier WSK-means was used as reference 

validated by best level sets segmentation results selected after processing at various intensity 

thresholds. It can be seen that MSK-means performs better than SK-means as expected and 

color maps showed even better accuracies than MSK-means. Further analysis showed that 

accuracies are also dependent on type of the image as well as user’s training and practice. It 

was observed that trained user can use the tool to get better accuracies especially in case of 

color maps based segmentation. The control available in color maps helps in achieving better 

segmentation than other algorithms as highlighted in Figure 6.

We have tested our algorithm for H&E, IHC stained biopsy tissue images but our 

segmentation approach is applicable to other types of staining. In addition, our methodology 

presents important image statistics in a user friendly way. For example, the color spread 

provides three useful features of an image: its component colors, amount of each color and 

most importantly co-localization or neighborhood information about color. Since we are 

presenting the 3D HSV color model with only two dimensions we necessarily discard 

intensity in the model resulting in the co-localization of black, gray and white at the center 

of the visualization. Even with this limitation, we have shown that proper visualization of the 

component colors along with user interactivity results in better segmentation results. Our 

segmentation scheme is particularly useful for biological images since conventional schemes 

do not cater to the gradual color variations in these images. Moreover, the algorithm is 

iteration-free and executes faster than conventional K-means and its variants. Our 

segmentation tool is semi-automatic to capture miniscule color details. With our previous 

experience in the field, we see prospects of this work towards use of quantitative analysis 

and study of different types of histological images.
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Figure 1. 
Mapping of image pixels to HS plane using random spread visualization showing a good 

representation of image pixels 3D scatter plot.
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Figure 2. 
Test image and its 2D Visualization space representation. Both the problems of co-located 

pixels and the unmapped space can be seen.
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Figure 3. 
(a) Test image (b) Random spread visualization showing dense regions corresponding to 

frequently occurring image pixels(c) User marked zones based on different color classes in 

test image. (d) Pseudo color segmentation results.
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Figure 4. 
(a) Class partitions shown for SK-means segmentation. (b) MSK-means multiple sub-classes 

can be combined to cater for intra-class variations. (c) WSK-means can change classification 

result by increasing and decreasing class zones based on slider weights. (d) Interactive Color 

map – user can select zones of any shape and size.
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Figure 5. 
User interaction time (including computation time) comparison for two sub groups. Color 

map segmentation performs better for larger images.
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Figure 6. 
(a) Test image (b) WSK-means segmentation used as reference (c) Color map based 

segmentation (d) SK-means segmentation (e) MSK-means segmentation (f) Level sets based 

segmentation for single class overlaid on top of test image
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Table-1

User interaction time comparison

Time (sees) μ±σ

Level sets (single class) Color maps SK-means MSK-means

Images 512×512 150.78±46.01 25.04±6.26 18.23±3.60 44.87±9.08

Images 1024×1024 1593.82+39.77 26.48+5.09 34.19±6.79 91.28+16.60
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Table-2

Segmentation accuracy comparison

Accuracy (μ±σ) Commissions (μ±σ) Omissions (μ±σ)

WSK-means 1.0±0.0 0.0+0.0 0.0±0.0

Color Maps 0.874±0.06 0.126±0.06 0.126±0.057

SK-means 0.839±0.09 0.161±0.09 0.161±0.09

MSK-means 0.859±0.09 0.141±0.09 0.141±0.09

Level sets 0.977±0.02 0.083±0.04 0.023±0.02
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