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Abstract

Deformable models and graph cuts are two standard image segmentation techniques. Combining 

some of their benefits, we introduce a new segmentation system for (semi-) automatic delineation 

of epicardium and endocardium of Left Ventricle of the heart in Magnetic Resonance Images 

(MRI). Specifically, a temporal information among consecutive phases is exploited via a coupling 

between deformable models and graph cuts which provides automated accurate cues for graph cuts 

and also good initialization scheme for deformable model that ultimately leads to more accurate 

and smooth segmentation results with lower interaction costs than using only graph cut 

segmentation. In addition, we define deformable model as a region defined by two nested contours 

and segment epicardium and endocardium in an unified way by optimizing single energy 

functional. This approach provides inherent coherency among the two contours thus leads to more 

accurate results than deforming separate contours for each target. We show promising results on 

the challenging problems of left ventricle segmentation.
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1. INTRODUCTION

Cardiovascular disease is now the largest cause of death in the world and most cardiac 

pathologies involve the left ventricle (LV). Physicians use magnetic resonance imaging 

(MRI) to for the evaluation of left ventricular functions of the heart. Segmentation of the left 

ventricle would help the estimation of cardiac functional parameters such as ejection fraction 

and myocardial mass. The main challenges in LV segmentation are: the overlap of intensity 

distributions within the cardiac regions; the presence of papillary muscles in the blood pool 

which causes to partial volume effect between blood pool and myocardium; low intensity 

contrast between the myocardium and the liver; blur effect observed in the apex slices; and 

the variation in the thickness of myocardium across the beating cycle. In recent years, 
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significant number of methods have been proposed towards LV segmentation. The methods 

using graph cuts [1], deformable models [2, 3], morphological operations [4], and shortest 

path algorithms [5] are some of them. Each of these techniques are state-of-the-art but each 

have different drawbacks due to high variation in the challenges of segmentation.

In classical graph cut segmentation techniques, consecutive interaction process is required 

[6, 7, 8, 9] for efficient and accurate segmentation in complex images. With the interaction 

process, image pixels a priori known to be a part of the object or background have to be 

introduced as topological constraints. In complex images (i.e myocardium of heart), the 

amount of time needed for this pixel-accurate work makes image segmentation a particularly 

frustrating task for users. Thus in a fast and low interaction cost system, the challenge is 

precise automated initial labeling in order to avoid further interactions. In addition to that, 

the problem of delineating the boundaries of objects in medical images requires smooth, 

continues working space. For example, in [10], the graph cuts are interpreted as hyper 

surfaces or contours in N-D manifolds in discrete image domains; however the problem of 

finding a smooth boundary separating the regions through the min cut of the graph is not 

trivial. [10], tries to solve this problem by using ”fine” locally connected grids and it 

requires increasing the resolution of the connectivity system of the graph from 4, 8 to 256 

and even higher resolutions. The result is an approximation and moreover, the computation 

time is increased since the number of edges in the graph is increased.

In contrast to graph cuts, deformable models [11] solve the segmentation problem in 

continuous domain using gradient descent optimization. This solves the continuity and 

smoothness problem indicated above, but in general requires good initialization. Use of 

global priors such as shape and position learned from training is very common and well 

known to help gradient descent optimization when good initialization is not provided, but 

highly nonlinear variation in these features makes the prior based optimization nontrivial. 

[12] is one of the detailed studies about this topic.

In this work we propose a comprehensive approach by combining several techniques: Graph 

Cuts, Free Form Deformable regions and image morphology with anatomical properties. We 

use free form deformable regions and graph cuts as coupled techniques in temporal domain 

to enhance the segmentation of the myocardium. Such coupling makes it possible to use 

deformable models for fast segmentation of sequence of images without the need of training; 

and graph cuts towards automated segmentation without need of iterative interaction. We 

demonstrate that it is possible to apply combinatorial optimization techniques in 

combination with variational approaches for segmentation of cardiac MRI using the model 

of the LV. The following sections describe individual steps of the algorithm in more detail.

2. SEGMENTATION FRAMEWORK USING GRAPH CUT AND DEFORMABLE 

REGION

We segment Left Ventricle of heart in 2D + time images in a cardiac cycle. Segmentation is 

started from an initial (end systol) phase of the cardiac cycle and propagated to other phases 

automatically. Graph cuts and deformable models are energy based object segmentation 

techniques and are formulated as the optimization of an energy functional of the form:
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(1)

Typically, Ei represents data term and Eb represents smoothness term. Deformable models 

optimize the cost function using variational approaches based on gradient descent while 

graph cuts use combinatorial optimization in finite dimensional space. The target is a 

continuous contour for a deformable model method or minimum cost cut (subset of 

weighted edges) of a graph for graph cut method. We use graph cuts for two tasks; 1) 

segmentation of blood pool region, and 2) rough segmentation of myocardium that is used as 

initialization for the deformable model method. Deformable models are used for two tasks 

as well: 1) enhancement of the myocardium segmentation result obtained by graph cuts, 2) 

providing temporal constraints towards automated pixel labeling for myocardium 

segmentation that is executed by graph cuts method through consecutive beating hearth 

images.

2.1. Segmentation of Blood Pool Region via Graph Cuts

Graph cuts require a graph  = 〈 , ℰ 〉 to be constructed with set of nodes  and edges ℰ. 

 corresponds to image pixels plus two additional nodes  and , while ℰ corresponds to 

union of undirected edges connecting neighboring nodes (image pixels) and undirected 

edges connecting the two special nodes (  and ) to other nodes [6, 9]. Our method starts 

from end systol (t0) phase when Blood Pool (bp) is smallest during whole beat cycle. For 

only (t0) phase, a quick and easy manual interaction is needed (i.e. paint brushing a few 

pixels inside and outside of the blood pool region) to initialize background ℬ and object 

pixels. Edges from  to t0 and from  to ℬt0 are created. All edges from these two 

terminals are referred to as t-links. Under a standard 8-neighborhood system , image 

pixels  − { , } are also connected by weighted edges that are called n-links. See Fig. 

1(a) for an example initialization. Given the initial seeds ℬt0 and t0 with image pixels , t-
links and n-links are constructed and the bp0 is extracted via min-cut algorithm that 

minimizes the cost function.

(2)

which is the homologous functional of Eq. 1. Here wi,j denote edge cost and they are 

initialized as follows: wi∈ ,j=  and wi∈ℬ,j=  are assigned with a large enough constant 1 

while wi∈ ,j=  and wi∈ℬ,j=  are zero. For n-links, a simple intensity gradient such as wp,q 

= e(−|Ip−Ip|2/σ) × dist(p, q)−1 is assigned. Here Ip and Iq are intensities at pixels p and q and 

dist(p, q) is the Euclidean distance. We refer the reader to previous works [6, 9] for more 

details about the basics of interactive graph cut segmentation. Since, the center of bpt is 

guaranteed to be inside the bpt±1 of the next phase towards end diastol, the centroid of bpt is 

1see [9], page 120
2kt0 = 7 is found to be a good initial value for all of the test cases in our experiments
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propagated with no interaction and used for min-cut segmentations of bt t±1 via 

independently constructed graphs. Fig. 1(b) shows an example set of bpt segmentation for t 
= {−2, −1, 0, 1, 2, 3, 4}.

2.2. Rough Segmentation of Myocardium via Graph Cuts

After bpt is extracted for all cycle, myocardium is assigned as the target object while the 

blood pool is pushed into the background. The myocardium is segmented fully automatically 

via graph cuts in the same fashion as described in section 2.1. The ℬt0 and  are 

initialized with use of morphological operations as follows:

1. bpt0 ⊕ se(kt0) : Dilate convex hull of blood pool with a disk shaped structuring 

element of size kt0 2.

2. bpt0 ⊕ se(kt0 − 1): Dilate convex hull of blood pool with a disk shaped 

structuring element of size kt0 − 1

3. Bandt0 = bpt0 ⊕ se(n) : Initialize a band region overlaid on the myocardium with 

extent n3. (see Fig. 2(a) unmasked gray scale region).

4. : The object cues are assigned as 

remainder mask (see Fig. 2(a) red pixels).

5. ℬt0 ≡ The background cues are assigned as the outside of Bandt0. (see Fig. 2(a) 

blue pixels).

Note here that, Bandt0 is the free pixels region that are going to be assigned {0, 1} values 

after graph cut segmentation. Details of the computation / update scheme of Bandt and se(kt) 

will be explained in section 2.4. The free pixels in the band region are cut out according to 

the min-cut of a graph that is constructed with  and ℬt0. An example illustration of 

resulting rough myocardium segmentation is shown in Fig. 2(b).

2.3. Enhancing Graph Cut Segmentation via Deformable Region

In our framework we follow [11], and the evolving model shape is embedded implicitly as 

the zero level set of a higher dimensional space of Euclidean distance transform function 

Φℳ. The deformation of the model is done via space warping technique the Free Form 

Deformations (FFD) [13]. The main idea in FFD is to deform an object by manipulating a 

regular control lattice overlaid on its volumetric embedding space based on the computed 

forces. The rough segmentation of myocardium, obtained via graph cuts, is used as 

initialization of a FFD region and FFD region is run for a couple of iterations until 

convergence, under the forces provided by maximum likelihood (ML) intensity Ei data term 

as in [11]. The Ei data term constrains the model to deform toward areas where the pixel 

probabilities of belonging to the model interior intensity distribution are high and is 

formalized by maximizing the log-likelihood of a pixel.

3n = 15 is found to be a good initial value for all of the test cases in our experiments
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(3)

Here, P(.|.) is computed using Gaussian kernel and Φℳ is the implicit representation of the 

model as zero level of a higher dimensional distance function. We refer the reader [11] for 

more details. Different from [11], we define the shape of the deformable model as a donut-
shape like chamber and deform the inner and outer contours with a single cost function 

optimization. This makes the segmentation of endocardium (endo) and epicardium (epi) of 

heart possible to be done in a unified way, which saves computation time and provides 

inherent smoothness constraint between them since the control points of FFD are common 

for both of the contours. Note here that, the smoothness constraint between the contours 

comes implicitly, since FFD guarantees C1 continuity at control points and C2 continuity 

everywhere else [13]. Endocardium and epicardium of the heart are computed from this 

deformation region. Since graph cut result is a very good initialization, FFD region snaps to 

the true region of the myocardium quickly. In Fig. 2(c), one can see an illustration of 

myocardium segmentation that is obtained using deformable regions.

2.4. Myocardium Segmentation in Whole Cardiac Cycle Using Temporal Coupling of Graph 
Cut and Deformable Region

In this section, we explain how Band t and se(kt) are computed automatically when prior 

segmentation of myocardium is available (for all but the first phase). For a phase t ≠ 0, 

before computing  and ℬt pixels, Band and k parameters are updated as follows:

Here, minDist, maxDist and avgDist are minimum, maximum and average perpendicular 

distances between the points on the bpt boundary and epit−1 contour at phase t − 1. α is a 

constant weighting parameter.

The extent of Bandt is computed using epit−1 (deformable region result) from the prior 

segmentation and bpt (graph cut result) from the current phase.

Note here Φ is the distance map of a given contour with positive values inside and negative 

values outside. According to above update scheme the graph cut method tries to increase the 

goodness of the initialization for the deformable region while deformable region method 

tries to put better topological (hard) constraints on the graph cut optimization when 

propagating temporal information from prior segmentations to next phases. Fig. 3 shows the 

merit of using the temporal coupling between two approaches on a phase t which is closer to 
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end diastol. In the figure, first row left image represents a myocardium initialization (red 

pixels) based on bpt only by morphological operations and the right image shows the final 

result based on it. The second row demonstrate initialization (red pixels) using epit−1 

(yellow) from prior segmentation and the bpt from current phase as described in this section. 

The right image is the corresponding final segmentation.

3. EXPERIMENTS AND RESULTS

We test our method on public data from MICCAI 2009 Left Ventricle Grand Challenge [14]. 

As stated in [14], cine steady state free precession (SSFP) MR short axis (SAX) images 

were obtained with a 1.5T GE Signa MRI. All the images were obtained with a temporal 

resolution of 20 cardiac phases over the heart cycle, and scanned from the ED phase. They 

provide ground truth for epicardium and endocardium at end diastol and the endocardium at 

end systol phase following the convention of including papillary muscles and endocardial 

trabeculations in the ventricular cavity. Although we segment all phases of cardiac cycle in a 

given slice we evaluate our results quantitatively only for available ground truths. Our 

segmentation contours were compared to the ground truth using the evaluation method 

provided in [14]. We report Dice measure and average perpendicular distance which 

measures the distance from the automatically segmented contour to the corresponding 

manually drawn expert contour, averaged over all contour points. The obtained error rates 

are shown in Table 1. Our proposed method meets the performance of top ranked methods in 

[14], regarding the average perpendicular distance error of 2.98 ±0.88mm/1.78 ±0.35mm for 

the endocardium/epicardium, respectively. Besides average scores, we also show 

performance of our method in specific cases such as ’SC-HYP-07’ and ’SC-HF-I-05’ which 

have been reported in [5, 2, 4] as difficult cases to segment. Again, the evaluation confirms 

the stability and reliability of our method. Visual illustrations are also shown in Fig. 4 for 

entire cardiac cycle of three different cases. First row shows the result on normal (healthy) 

data while the other two rows shows the epicardium and endocardium results for cases with 

Ischemic Heart Failure and Hypertrophy, respectively. The speed of the system was 

measured on core duo laptop (1.83 GHz with 2Gb of RAM) using Matlab environment. 

Segmentation takes 45 seconds after a quick interaction on the initial phase of a data set of 

20 images.

4. CONCLUSIONS AND FUTURE WORKS

We have presented a system to (semi-) automatically segment the left ventricle in cardiac 

cine MR images. The system takes advantages of using a hybrid method using graph cuts 

and deformable models such that graph cuts allow quick and easy interaction to create good 

initializations for deformable models. On the other side, deformable models help making 

automated cue labeling for graph cuts which creates a chain cycle propagated from initial 

image to others via temporal information among consecutive phases. We have tested our 

method on 15 subjects from Miccai Left Ventricle Segmentation Challenge 2009 validation 

database and reported state-of-the-art results. We have couple of ideas that could next 

research directions. On deformable models side, segmenting all phases in a unified 

optimization scheme that involves temporal data cost term would be a useful extension. One 

could also add more coupling information between endocardium and epicardium during 

Uzunbaş et al. Page 6

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deformation. On graph cuts side, using higher level priors or constraints is possible. One 

could introduce 3D shape model of LV to increase the accuracy particularly in slices close to 

apex and basal. Finally, our method also keeps the flexibility of extending the limits of the 

current interaction scheme allowing more controllability which is also a possible demand 

from clinicians.
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Fig. 1. 
(a) User given ℬt0 and t0 cues at t0, (b) a set of bpt segmentation for t = {−2, −1, 0, 1, 2, 3, 

4}. Note here that due to lack of space, t does reflect only the ordering of the actual index 

number of beat cycle.
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Fig. 2. 
(a) Initialization of myocardium segmentation at t0, (b) myocardium segmentation via graph 

cut based on initialization in (a), (c) result obtained after deformable region segmentation 

that is initialized by (b).
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Fig. 3. 
Shows the effect of using temporal constraint. In the first row no prior information is used 

when initializing the  and ℬt (left image); whereas on the second row prior epit−1 result 

(yellow) is used. Images in second column show corresponding segmentation results for the 

initializations. See text.
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Fig. 4. 
Qualitative results for entire cardiac cycle. 1st row: normal case; 2nd row: Ischemic Heart 

Failure case; 3rd row: Hypertrophy case.
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Table 1

Scores obtained by evaluation method in c.f [14] for the 15 subjects from the validation data sets of the Left 

Ventricle 2009 Challenge, as well as for 2 difficult to segment data sets ’SC-HYP-07’ and ’SC-HF-I-05’.

Mean/Std Dice Dist (mm)

Endo Epi Endo Epi

’SC-HF-I-05’ 0.91 0.92 1.81 1.62

’SC-HYP-07’ 0.80 0.91 2.85 1.76

Overall 15 subjects 0.82 ± 0.06 0.91 ± 0.03 2.98 ± 0.88 1.78 ± 0.35
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