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Abstract

Extracting and labeling sulcal curves on the human cerebral cortex is important for many 

neuroscience studies, however manually annotating the sulcal curves is a time-consuming task. In 

this paper, we present an automatic sulcal curve extraction method by registering a set of dense 

landmark points representing the sulcal curves to the subject cortical surface. A Markov random 

field is used to model the prior distribution of these landmark points, with short edges in the graph 

preserving the curve structure and long edges modeling the global context of the curves. Our 

approach is validated using a leave-one-out strategy of training and evaluation on fifteen cortical 

surfaces, and a quantitative error analysis on the extracted major sulcal curves.

Index Terms
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1. Introduction

Cortical sulci are important structures on the cerebral cortex. They play a key role in 

identifying and measuring brain variability. Extracting and labeling sulci on human cortical 

surface is thus important in many neuroscience studies. Automatic extraction methods are 

typically used since manual delineation is too time consuming for the analysis of large 

populations.

Various approaches have been taken to detect sulcal curves or sulcal regions on the cortical 

mantle. Many methods extract pieces of sulcal curves or regions, without labeling them, by 

exploiting geometric information such as sulcal depth [1], isotropic geodesic distance maps 

[2]. To detect labeled sulcal curves, several works apply an extract and label strategy [3, 4], 

where sulcal curve pieces are first blindly extracted and then pruned and labeled by prior 

information learned from training data.

A deformable shape registration approach based on an Active Shape Model (ASM) was 

proposed in [5]. An initial set of sulcal curves deforms to match the sulcal geometric feature 

on a new brain while conforming to the shape statistics learned from the training data. 

However, due to the limited shape modes obtained from Principal Component Analysis 

(PCA), the method can only model a few major sulci which has relatively small variation 

across different brains.

In this paper, we follow the idea of a shape prior constrained deformable registration in [5]. 

Instead of a PCA based shape statistics, we use a Markov Random Field (MRF) to model the 
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joint distribution of shape points, which focuses on interactions between subsets of shape 

points, especially those in a geometric neighborhood. The low dimensionality of local 

statistics can be studied fully by limited training samples. In the rest of the paper, we first 

describe how to build the MRF model on shape points of sulcal curves and estimate MRF 

parameters from training samples, then we incorporate the MRF shape prior into the 

probabilistic based point set registration framework, and finally we demonstrate the 

effectiveness of the proposed method on 15 subjects with a leave-one-out strategy.

2. Method

Fig. 1 shows the fourteen major sulcal curves (on the left hemisphere) which we will be 

extracting. In order to study the shape statistics of sulcal curves in a common 2D manifold, 

the cortical surfaces of all training subjects are mapped to a unit sphere [6] and the MRF 

based shape statistics are computed from all the training shapes in this space. Given the 

cortical surface of a new subject with geometric features computed on every surface point, it 

is first mapped to the unit sphere, resulting in a subject's feature map on the unit sphere, then 

an initial shape is deformed to match the subject geometric features, and finally the resulting 

sulcal curves are projected back to the original cortical surface.

2.1. MRF model on shape points

In this work, the shape is formed by a set of sulcal curves Si, i = 1, 2,…, Ns, with each sulcal 

curve represented by a sequence of dense landmark points, , Mi. Let 

 be the set of all the points that form the shape. We build the MRF model on point 

set Y described by an undirected graph G = (Y, E), with each point being a node in the 

graph. The set of edges E encodes conditional dependences between the shape points. 

Assuming the Markovian property among the nodes, the Hammersley-Clifford theorem 

states that the joint probability distribution of any MRF can be written as a Gibbs 

distribution,

(1)

Where the product is over all cliques c ∈ C in the graph. A clique is a subset of nodes in 

which every node is connected to every other node. Each ψc(xc; Θ) is called a potential 

function and depends only on those random variables whose indices are in c. Z(Θ) is the 

partition function, and takes the form,
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2.2. Edge structure and potential functions

Though the shape of sulcal curves may vary greatly across different subjects, the spatial 

position of each sulci changes within a predictable range and the distances between 

neighboring sulci are relatively stable. We encode these observations in the MRF model by 

specifying potential functions on single-point cliques and multi-point cliques. We assume 

the single-point potential function follows a Gaussian distribution on the coordinates of 

landmark point, ym,

Where ȳm and Σm are the mean and covariance of the coordinates.

Ideally a point is highly correlated with any other points within its spatial neighborhood and 

an edge can be created between the two points in the graph. However, this results in a over 

complicated graph with many redundant edges. To create a simpler graph, we selectively 

build two kinds of edges representing two kinds of correlations between shape points and 

specify potential functions for each edge set.

Short range correlations—Short range correlations are to preserve the smooth curve 

structure of each sulci. As shown in Fig. 2, short edges are created between sequential points 

in a curve and between two points separated by one point, forming the edge set Es. We only 

consider potential functions on triangle cliques, the cliques formed by sequential three points 

in a curve. Let c = {y1, y2, y3} be a triangle clique in Es and y1, y2, y3 be the coordinates of 

the three sequential points, the potential function is constructed as follows to penalize the 

second derivative of the curve,

Long range correlations—Long range correlations are to preserve the distances between 

shape points in a spatial neighborhood. In order to generate isotropic edges for long range 

correlations, the shape points are partitioned into P non-overlapping downsampled versions 

of the original point set, Y1, Y2, …, YP and a Delaunay triangulation is carried out on each 

downsampled point set, generating triangular graph G1, G2, …, GP with edge set E1, E2, …, 

EP. The set of long edges is thus defined by , see Fig. 3. Again, only potential 

functions on triangle cliques are considered. For long range cliques, we assume the potential 

function follows a Gaussian distribution w.r.t the edge lengths of the triangle
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Where dc = (‖y1 − y2‖, ‖y2 − y3‖, ‖y3 − y1‖)T. d̄
c and Σc are the mean and covariance of the 

distances.

The joint distribution of all shape points in Eq. (1) can then be written as,

Where Cs is the set of all short range cliques and Cl is the set of all long range cliques. Θ = 

{(ȳm, Σm)|m = 1, 2, …, M} ∪ {σc|c ∈ Cs} ∪ {(d̄
c, Σc)|c ∈ Cl} is the set of MRF parameters.

2.3. MRF Parameter Estimation

Computing the maximum likelihood estimate of parameter set Θ is hard due to the 

intractability of the partition function Z(Θ). We take the approach of piecewise training [7], 

which independently trains the local potential function on each clique, afterwards combining 

the learned parameters into a single global model. For a clique c, Θ|c is define as the 

restriction of Θ to c; that is, Θ|c is the same as Θ, but with zeros in all entries that do not 

correspond to the clique c. The piecewise approximated log Gibbs distribution is defined as,

(2)

Where lc(Yc; Θ|c) = −ψc(Yc) − log Z(Θ|c) is the local log likelihood.

Since there are no common parameters between different cliques, the parameters Θ|c and 

local partition function Z(Θ|c) can be trained independently on each clique.

2.4. Deformable Registration with MRF Based Shape Prior

The point set registration framework in [8] is used for the shape deformable registration, 

which has shown to be both accurate and robust w.r.t initial positions and outlier points. Let 

X be the set of points sampled from the target image (geometric feature map of a subject 

cortical surface mapped onto the unit sphere). Y is the set of points to be deformed. The 

point set registration problem is considered as a probability density estimation problem, 

where the point set of deformable shape are the centroids of a Gaussian mixture model and 

the target image point set are data points. Given X, the optimal shape Y is computed by 

maximizing the posterior probability p(Y|X) or equivalently, by minimizing the negative log 

likelihood function,
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where lPW(Y; Θ) is the piecewise approximated log distribution of shape points Y in Eq. (2). 

π(m) is the mixture weight and p(xn|m) are the component Gaussian distributions of both 

spatial coordinates and geometric features.

The optimization is solved by an Expectation-Maximization algorithm, and the initial shape 

Y0 is the mean shape computed from the training shapes.

3. Experiments

We applied our method to the left hemisphere of 15 subjects from the Open Access Series of 

Imaging Studies (OASIS) [9] database. First, cortical surfaces are extracted from the MR 

images using the TOADS-CRUISE [10, 11, 12] software available from www.nitrc.org. 

Mean curvatures are computed on each subject's surface under different levels of inflation to 

form a feature vector at each point on the surface. The 14 major sulcal curves are manually 

delineated by a train rater on each subject surface. Leave-one-out experiments are carried 

out on the data set, using each subject as test subject and the remaining 14 subjects to train 

the MRF based shape prior. As shown in Fig. 4, the automatically extracted sulcal curves 

aligned well with the manually delineated ones.

In order to evaluate the extraction accuracy on each sulcal curve point, we compute two 

distances: dam(pa), the distance from a point pa on an automatically extracted sulcal curve to 

the corresponding manual traced sulcal curve and dma(pm) the manual traced to extracted 

ones. Fig. 5 shows that over 60% percent of the automatically extracted sulcal curve points 

are within 2mm of the manual traced points and over 80% within 5mm. We also plot the 

average dam and dma over all subjects at each sulcal curve point, see Fig. 6. The main error 

comes from the end points of sulcal curves and regions that have high variability of sulcal 

shape or lack of geometric features.

To assess the performance on each sulcal curve, we compute the mean and max of dam over 

all the points on a certain major sulcal curve, called respectively the average distance Aam 

and the Hausdorff distance, Ham, from the extracted curves to the manually traced ones. 

Similarly we have Ama and Hma from the manually traced to the extracted curves. Table 1 

lists the four curve distances Aam, Ama, Ham and Hma, for each major sulci, averaged over all 

subjects. The average curve distance is around 2mm in both directions. Sylvian fissure, 

central sulcus and superior frontal sulcus obtained average distance of less than 2mm. The 

middle, inferior temporal sulcus and intraparietal sulcus have relatively large error due to the 

interruptions and shallowness of sulcal structure along the curve on the cortical surface. Ham 

and Hma are relatively large because of the uncertainty in the end points of sulcal curves.

4. Conclusion

We propose a method for automatically extracting the major sulcal curves by registering a 

set of dense landmark points to the subject cortical surface. A Markov random field (MRF) 

is used to model the joint distribution of these landmark points with short edges in the graph 

preserving the curve structure and long edges modeling the global context of the curves. The 

method is applied to extract 14 major sulcal curves on the outer cortical surface and 

quantitative evaluation demonstrates good extraction accuracy. In future work, we would like 
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to further explore the graph structure of the shape points, such as the addition of more 

complicated long range interactions.
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Fig. 1. 
Fourteen major sulci on an inflated cortical surface and after mapping to the unit sphere.
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Fig. 2. 
Short edges in the graph and the triangle cliques.
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Fig. 3. 
The set of long edges formed by accumulating triangularizations of downsampled shape 

points.
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Fig. 4. 
Example result on one subject. Top row: automatically extracted sulcal curves on the inflated 

surface. Bottom row: extracted sulcal curves overlayed with manual traced ones (shown in 

black).
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Fig. 5. 
Cumulative histogram of dam (left) and dma (right) over all sulci and all subjects.
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Fig. 6. 
Point average dam (top row) and dma (bottom row) over all subjects.

Yang et al. Page 12

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2016 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 13

Ta
b

le
 1

A
ve

ra
ge

 a
nd

 H
au

sd
or

ff
 d

is
ta

nc
es

 b
et

w
ee

n 
an

 a
ut

om
at

ic
al

ly
 e

xt
ra

ct
ed

 m
aj

or
 s

ul
ca

l c
ur

ve
 a

nd
 th

e 
m

an
ua

lly
 tr

ac
ed

 o
ne

 (
un

it:
m

m
).

S1
S2

S3
S4

S5
S6

S7

A
am

1.
4

2.
9

1.
8

2.
3

1.
9

2.
2

2.
6

A
m

a
1.

5
3.

0
2.

0
2.

7
2.

1
2.

7
3.

1

H
am

5.
2

9.
2

8.
4

7.
9

7.
9

8.
4

10
.4

H
m

a
6.

0
9.

8
8.

7
8.

8
8.

0
9.

9
10

.7

S8
S9

S1
0

S1
1

S1
2

S1
3

S1
4

A
am

2.
7

3.
4

2.
8

2.
0

2.
5

2.
5

2.
3

A
m

a
2.

9
3.

1
3.

0
2.

1
2.

6
2.

7
2.

3

H
am

11
.4

10
.5

9.
3

10
.7

9.
4

7.
2

9.
3

H
m

a
10

.4
9.

6
10

.4
9.

0
8.

6
7.

6
9.

4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2016 June 12.


	Abstract
	1. Introduction
	2. Method
	2.1. MRF model on shape points
	2.2. Edge structure and potential functions
	Short range correlations
	Long range correlations

	2.3. MRF Parameter Estimation
	2.4. Deformable Registration with MRF Based Shape Prior

	3. Experiments
	4. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Table 1

