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Abstract

Diffusion imaging can map anatomical connectivity in the living brain, offering new insights into 

fundamental questions such as how the left and right brain hemispheres differ. Anatomical brain 

asymmetries are related to speech and language abilities, but less is known about left/right 

hemisphere differences in brain wiring. To assess this, we scanned 457 young adults (age 23.4±2.0 

SD years) and 112 adolescents (age 12-16) with 4-Tesla 105-gradient high-angular resolution 

diffusion imaging. We extracted fiber tracts throughout the brain with a Hough transform method. 

A 70×70 connectivity matrix was created, for each subject, based on the proportion of fibers 

intersecting 70 cortical regions. We identified significant differences in the proportions of fibers 

intersecting left and right hemisphere cortical regions. The degree of asymmetry in the 

connectivity matrices varied with age, as did the asymmetry in network topology measures such as 

the small-world effect.
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1. INTRODUCTION

Diffusion MRI, and its extensions such as high angular diffusion imaging (HARDI), can be 

used to infer patterns of anatomical connectivity in the living brain [10]. Connectivity 

studies are now being extended to even larger populations, offering ever-increasing power to 

identify characteristic patterns of brain wiring in psychiatric and neurological disorders [6]. 

Surprisingly, many fundamental questions are still unanswered, such as whether the left and 
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right brain hemispheres differ in connectivity. By contrast, morphometric brain asymmetry 

has been intensively studied [3].

Graph theory [10] is a powerful branch of mathematics that is increasingly applied to study 

how neural networks are organized. Several network topology measures have identified 

highly connected hubs in the brain [3]. Its anatomical and functional connections are 

organized as “small-world” networks and are highly modular [3]. Signs of network 

efficiency - such as a high clustering coefficient and short average path length - are related 

to intellectual function in high-density resting state EEG [7]. Full-scale IQ is also related to 

small-world properties in networks derived from diffusion tensor tractography [9]. Network 

connectivity measures may therefore offer insights into efficient information transfer in the 

brain [9].

Morphometric asymmetries are widely recognized for Sylvian fissure morphology and the 

volumes of language-related cortices such as the planum temporale [14]. Given these known 

asymmetries, which may also influence neural connectivity, we set out to use HARDI in a 

large cohort to find areas with left/right hemisphere differences in fiber density. We also 

aimed to identify left/right differences in global network properties, such as clustering 

coefficient, characteristic path lengths and nodal strength. Some models of Alzheimer's 

disease suggest that the hemispheres may degenerate at different rates due to differences in 

network connectivity [13], but data on this question has been lacking.

To address this, we scanned 569 subjects (112 adolescents and 457 young adults) with 

HARDI and extracted tracts throughout the brain using a HARDI tractography algorithm 

based on the Hough transform [1]. The tractography method used orientation density 

functions to provide higher order models of the diffusion process, capturing fiber crossings 

that might be missed if a single-tensor diffusion model is assumed [6]. Connection matrices 

were created to represent the proportion of brain connections interconnecting 70 cortical 

regions of interest, defined automatically in co-registered anatomical scans. Patterns of 

interhemispheric (left/right) asymmetries in the connection matrices were assessed 

statistically.

Furthermore, we used a set of MATLAB toolbox functions (BCT; https://sites.google.com/a/

brain-connectivity-toolbox.net/) to analyze network topology for the right and left 

hemispheres, separately. We also tested if brain laterality depended on age, as the gross 

anatomical asymmetry of the brain increases with age, well into adolescence [12].

2. METHODS

2.1. Subjects and image acquisition

We scanned 457 right-handed young adults (mean age, 23.4±2.0 SD years) and 112 right-

handed adolescents (age 12-16) with 4T HARDI and standard T1-weighted structural MRI. 

The participants were all twins, but genetic aspects are not considered further here. MR 

images were collected at the Center for Magnetic Resonance (University of Queensland) 

with a 4-Tesla Bruker Medspec MRI scanner (Ettingen, Germany) using a transverse 

electromagnetic (TEM) headcoil. T1-weighted imaging used an inversion recovery rapid 
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gradient echo sequence with parameters: TI/TR/TE=700/1500/3.35 ms, flip angle=8°, slice 

thickness = 0.9 mm, and a 256×256 acquisition matrix. Diffusion-weighted images were 

acquired using single-shot echo planar imaging with a twice-refocused spin echo sequence 

to reduce eddy-current induced distortions with imaging parameters: TR/TE 6090/91.7 ms, 

23 cm FOV, with a 128×128 acquisition matrix. Each 3D volume consisted of 55 2-mm 

thick axial slices with no gap, and a 1.79×1.79 mm2 in-plane resolution.

We acquired 105 images per subject: 11 with no diffusion sensitization (i.e., T2-weighted b0 

images) and 94 diffusion-weighted (DW) images (b = 1159 s/mm2) with gradient directions 

evenly distributed on the hemisphere, for unbiased directional sampling of the diffusion 

propagator. Scan time was 14.2 minutes.

2.2. DWI preprocessing, cortical surface extraction and registration

We preprocessed the data by automatically removing non-brain tissue from each T1-

weighted MRI scan, using ROBEX [5] as well as from a T2-weighted image from the DWI 

set, using the FSL tool “BET” (http://fsl.fmrib.ox.ac.uk/fsl/). T1-weighted images were 

linearly aligned using FSL (with 9 DOF) to a common space [9] with 1mm isotropic voxels 

and a 220×220×220 voxel matrix. Raw diffusion-weighted images were corrected for eddy 

current distortions using FSL's “eddy_correct” (http://fsl.fmrib.ox.ac.uk/fsl/). For each 

subject, the 11 eddy-corrected images with no diffusion sensitization were averaged, linearly 

aligned and resampled to a downsampled version of their corresponding T1 image 

(110×110×110, 2×2×2mm). Averaged b0 maps were elastically registered to the structural 

scan using a mutual information cost function [8] to compensate for EPI-induced 

susceptibility artifacts.

2.3. HARDI tractography

The transformation matrix from linearly aligning the mean b0 image to the T1-weighted 

volume was applied to each of the 94 gradient directions to properly re-orient the orientation 

distribution functions (ODFs). At each HARDI voxel, ODFs were computed using the 

normalized and dimensionless ODF estimator, derived for QBI in [13]. This approach 

considers the Jacobian factor r2 to compute the constant solid angle (CSA) ODF:

Here S(û) is the diffusion signal, and S0 is the baseline image. FRT is the Funk-Radon 

transform and ∇ 2b is the Laplace-Beltrami operator. We used this ODF reconstruction 

scheme as it improves the resolution of multiple fiber orientations [13] relative to the 

original QBI definition [14]. With this set of ODFs, we performed HARDI tractography on 

the linearly aligned DWI volumes.

Tractography was performed by seeding voxels with a prior probability based on the 

fractional anisotropy (FA) value derived from the single-tensor model [2]. All curves 

passing through a seed point receive a score estimating the probability of the existence of the 
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fiber, computed from the ODFs. A voting process provided by the Hough transform 

determined the best fitting curves through each point [1].

Elastic deformations obtained from the EPI distortion correction, mapping the average b0 

image to the T1-weighted image, were then applied to the tract's 3D coordinates. Fibers with 

fewer than 15 points were filtered out. Each subject's dataset contained 5000-10,000 useable 

fibers (3D curves).

2.4 Left and right hemisphere matrix analysis

A 70×70 connectivity matrix was created for each subject. The elements of this matrix 

represented the proportion of fibers connecting all cortical regions, within and across 

hemispheres; the key to these 70 regions is in [6]. To avoid applying statistical analysis to 

unreliable or incorrectly extracted connections, any connection was considered invalid if it 

was only found in less than 95% of the subjects.

We analyzed the left and right hemispheres individually for all 569 subjects and computed 

several network measures (clustering coefficient, characteristic path length, directed 

strengths and small-world effects) for each hemisphere using the BCT. We fitted a random 

effects regression model to all subjects testing for differences between the left and right 

hemispheres and age effects between the left and right hemisphere connectivity matrices and 

scalar measures of brain connectivity. Correlated samples may arise in the tractography 

maps as individuals in the same family are related; therefore, we used random effects 

regression to correctly account for kinship and group the subjects by family. A random 

intercept was included for each family. Hemispheric differences were assessed after 

covarying for any effect of age and sex at each valid matrix connection. Moreover, we 

computed the element-wise difference matrix between the left and right hemispheres. In this 

case, BCT measures can still be applied but have a different meaning; they can identify the 

direction of the asymmetry (i.e., L>R or R>L) for all valid connections.

2.5 Clustering coefficient, characteristic path length, nodal strength and small-world effect

In graph theory, a connection matrix may be compiled that describes the topology of a 

network and consists of nodes and edges [11]. Nodes are represented as matrix rows and 

columns and the edges are the matrix entries [11]. The degree of a node, i, can be derived 

from the connection matrix:

Here, (i,j) represents a link between nodes i and j, while aij is the connection status between 

nodes i and j.

The functional contribution of a node, and its interactions with neighboring nodes, is 

determined by computing the network's clustering coefficient. This measures the density of 

the interconnected neighbors of individual nodes [11]:
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Ci is the clustering coefficient of node Ci=0 for ki<2) and ti is the

The ‘triangles’ around node i, are the fraction of fully connected 3-nodes, which is 

equivalent to the clustering coefficient [11]. The clustering coefficient was computed from 

the left hemisphere 35×35 matrix, CL(x,y), and right hemisphere 35×35 matrix, CR(x,y). The 

left and right hemisphere matrices are undirected graphs and the difference between the two 

is defined by the laterality matrix, A(x,y)=CL(x,y)-CR(x,y). If this matrix is thresholded to 

retain only connections exceeding some positive laterality threshold, then it becomes a 

directed graph. In directed networks, such as the asymmetry matrix A(x,y), the incoming and 

outgoing edges make up the indegree  and outdegree 

of the network. The nodal strength is the sum of all edge weights of a node [11].

The characteristic path length, where Li is the average distance between node, i, and all other 

nodes, is the number of distinct edges [11] in a network.

The small-world effect, S, is the ratio between the clustering coefficient and the 

characteristic path length after both measures are normalized relative to corresponding 

values obtained from randomized networks [11]. A small-world effect measure significantly 

greater than one indicates the coexistence of a high clustering coefficient and short path 

length [11].

3. RESULTS

We fitted a random effects regression model to all 569 subjects testing for differences 

between left vs. right hemispheres (using zeros for the left hemisphere and ones for the right 

hemisphere) to determine any differences between the left and right hemisphere connectivity 

matrices and the scalar measures of brain connectivity (clustering coefficient, nodal strength, 

characteristic path length and small-world effect). This set-up essentially served as a paired 

t-test as the random effects model accounts for the family relatedness between the twin 

subjects. We first tested the difference between the left, CL(x,y), and right, CR(x,y), 
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hemisphere connectivity matrices in all 569 subjects using random effects regression (Fig. 
1). The test returned significant differences between the left and right hemispheres at almost 

all cortical connections (FDR critical p-value=0.043). Some of the significant differences 

were between cortical regions 18, pars opercularis, 19, pars orbitalis, and 20, pars 

triangularis. These regions are of note as they form part of Broca's area, which is 

functionally specialized for speech production in the left hemisphere, and has known 

morphometric asymmetries. Even so, regions with connectivity differences extended well 

beyond the systems most typically studied for morphometric asymmetries. These results led 

us to further analyze left-right differences in the scalar measures of brain connectivity.

To determine the differences between the left and right hemisphere brain connectivity 

measures in all 569 subjects, we ran the random effects regression as described above and 

found left-right differences in the clustering coefficient (p<0.034), characteristic path length 

(p<2.42×10−10) and nodal strength (p<0.041). The differences between the left and right 

hemispheres were seen in 28 cortical regions for the nodal clustering coefficient measure, 1 

cortical region for the characteristic path length and 30 cortical regions for the nodal 

strength. Of all these, cortical region 18, the pars opercularis, was significant for all 

measures.

The Pearson correlation between the clustering coefficients of the left and right hemispheres 

was significant (see above) but not high: 0.21 in adolescents and 0.33 in adults. 

Interestingly, the characteristic path length showed much higher correlations between left 

and right hemispheres: 0.49 in adolescents and 0.78 in adults. The global clustering 

coefficient and characteristic path length jointly determine the small-world effect. For this, a 

global clustering coefficient was computed by taking the mean of all local clustering 

coefficients for each of the adolescents and adults respectively. The ratio of the global 

clustering coefficient to the characteristic path length for the left and high hemisphere 

connection matrices is the small-world effect and is shown in Figure 3.

To see if the laterality matrix, A(x,y), depended on age, a random effects regression was run 

across all subjects and an FDR critical p-value of 0.017 was found. We analyzed the beta 

maps to determine the asymmetry shift between the left and right hemisphere. Beta-values 

(or the slope of the regression) for significant age effects are plotted element-wise in Figure 
2, which was masked by the significant and thresholded p-values obtained from the random 

effects regression between the left and right connectivity matrices (Fig. 1). The masked 

beta-value map consisted of 235 negative values and 229 positive values showing that the 

right hemisphere has more fibers with age. Significant age effects were also found when 

analyzing the laterality matrix between left and right hemisphere nodes. Within these 

connections, many (but not all) nodes were within regions with acknowledged 

morphometric asymmetry, such as the pars triangularis and pars opercularis.

Significant age effects were found for the clustering coefficient (the overall summary 

measure) in both the left and right hemispheres. In the left hemisphere, there were effects of 

age on fiber organization of the clustering coefficient measures at 17 nodes: 2, 3, 8, 9, 10, 

11, 14, 16, 17, 18, 20, 22, 23, 24, 27, 29, and 31 (Table 1). Similarly, in the right 
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hemisphere, the age effects were found at 14 nodes: 3, 5, 11, 12, 14, 15, 19, 20, 21, 22, 23, 

26, 27 and 28.

Age differences were found in the analysis of the characteristic path length measure for the 

right and left hemispheres in cortical region 1. For the nodal strength measure, age effects 

were found at 22 nodes in the left hemisphere at regions: 1, 2, 3, 7, 8, 9, 11, 12, 14, 15, 16, 

17, 18, 20, 22, 23, 24, 27, 29, 31, 34 and 35, and at 16 nodes in the right hemisphere at 

regions: 2, 3, 5, 9, 11, 12, 14, 19, 20, 21, 22, 23, 26, 27, 28 and 35. The banks of the superior 

temporal sulcus are part of this list (region 1), consistent with our prior findings of changing 

perisylvian asymmetry in adolescence [12].

The directional matrix between the left and right hemisphere, A(x,y), also showed sex 

differences, so sex may interact with the level of brain asymmetry (in line with prior reports 

of small but detectable sex differences in asymmetry and connectivity [6]). These results are 

omitted due to space limits.

4. DISCUSSION

We used 94-direction high-angular resolution images (HARDI) in 569 individuals at 4 Tesla 

to trace fiber tracts throughout the brain, with orientation distribution function (ODF) based 

tractography. This allowed valid pursuit of the diffusion propagator where fibers mix or 

cross. After cortical labels were extracted automatically from co-registered surface models 

the interhemispheric connections were studied using statistical analysis of the binary 

directed connection matrices extracted from each brain.

Regions with connectional asymmetry, or with significant age effects on this asymmetry, are 

scattered all over the brain. Regions with well-known morphometric asymmetry, such as the 

pars opercularis (a region specialized for speech in the left hemisphere) also showed 

asymmetric connections, but the connectional asymmetry was by no means limited to well-

studied temporal and parietal language areas where morphometric asymmetry is widely 

documented [14]. Based on the results shown by the beta-map (Fig. 2) there is an increase in 

the relative fiber density favoring the right hemisphere over time (or the brain becomes more 

asymmetric towards the right hemisphere with age). Also, the small world effect was more 

evident in the right hemisphere (Fig. 3).
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Figure 1. 
P-values from the random effects regression model (using zeroes for the left hemisphere and 

ones for the right hemisphere) comparing the left, CL(x,y), and right, CR(x,y), hemisphere 

connectivity matrices in 112 adolescents and 457 adults (FDR critical p-value=0.0433; 

higher critical values denote stronger effects).
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Figure 2. 
B-values from a random effects regression at each element of the difference matrix between 

the left and right connectivity matrices, A(x,y)= CL(x,y) - CR(x,y), masked by the significant 

p-values from the random effects regression between the left and right hemispheres (Fig. 1). 

The gray values denote non-significant b-values. There are more significant negative b-

values (235) than positive b-values (229), suggesting that the relative density of fibers in the 

right hemisphere increases with age.
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Figure 3. 
The level of “smallworldness” for the left and right hemispheres is shown for 112 

adolescents (top, red) and 457 adults (bottom, blue). This measure is the ratio of the global 

clustering coefficient to the characteristic path length, computed from binarized connectivity 

matrices for the left and right hemispheres. As expected, network topology measures are 

highly correlated between left and right hemispheres. Small-world organization is more 

evident in the right hemisphere.
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Table 1

Index of cortical areas extracted from FreeSurfer.

1 Bank of the superior temporal sulcus 19 pars orbitalis

2 Caudal anterior cingulate 20 Para triangularis

3 Caudal middle frontal 21 peri-calcarine

4 Corpus callosum 22 Postcentral

5 Cuneus 23 Posterior cingulate

6 Entorhinal 24 pre-central

7 Fusiform 25 Precuneus

8 Inferrior Parietal 26 Rostral anterior cingulate

9 Inferrior Temporal 27 Rostral anterior cingulate

10 Isthmus of the cingulate 28 superior frontal

11 Lateral occipital 29 Superior parietal

12 Lateral orbitofronatal 30 Super temporal

13 Lingual 31 Super marginal

14 Medial orbitofrontal 32 Front Pole

15 Middle temporal 33 Temporal pole

1 6 Parahippocampal 34 Transverse temporal

17 Paracentral 35 Insula

18 Pars opercularis
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