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Abstract

In this paper, we introduce a nonrigid registration method using a Markov Random Field (MRF) 

energy model with second-order smoothness priors. The registration determines an optimal 

labeling of the MRF energy model where the label corresponds to a 3D displacement vector. In the 

MRF energy model, spatial relationships are constructed between nodes using second-order 

smoothness priors. This model improves limitations of first-order spatial priors which cannot fully 

incorporate the natural smoothness of deformations. Specifically, the second-order smoothness 

priors can generate desired smoother displacement vector fields and do not suffer from fronto-

parallel effects commonly occurred in first-order priors. The usage of second-order priors in the 

energy model enables this method to produce more accurate registration results. In the 

experiments, we will show comparative results using uni- and multi-modal Brain MRI volumes.

Index Terms

Nonrigid Volume Registration; MRF Energy Model; Second-Order Smoothness Prior

1. INTRODUCTION

Recently, nonrigid registration methods based on a Markov Random Field (MRF) energy 

model incorporating the discrete energy optimization [1, 2] showed the promising 

experimental results [3, 4, 5]. These methods model the deformation pattern as a discrete 

label set where labels correspond to displacements of control points (nodes) placed on a 

cubic mesh grid. The energy is constructed via the standard pairwise MRF model

(1)

where  is a set of nodes placed on a cubic grid, ℰ is a set of edges incorporating 

neighborhood information of nodes, and xs is the label of s ∈ . In this model, the data cost 
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θs is computed using similarity measures between reference and input images and the 

smoothness cost θst is computed using displacement differences between s and t. For θst, the 

following first-order smoothness prior (truncated linear potential) is conventionally used

(2)

where λst is the regularization constant, d(xs) represents the 3D displacement vector 

corresponding to the label xs, and Tst is a threshold for truncation. However, the energy 

models based on (2) have limitations. The pairwise potentials penalize the global 

transformations of the mesh, such as rotation and scaling movements. Mesh nodes are 

needed to be remained at initial position or translated all together to get low energy. These 

problems correspond to fronto-parallel effects in stereo matching. In nonrigid registrations, 

irregular spacing between neighboring nodes in recovered vector fields is commonly 

appeared by these limitations.

To overcome these limitations, Kwon et al. [6] proposed a registration method using higher-

order MRF energy model. This method incorporates second-order spatial interactions to 

represent natural smoothness of displacement fields. The energy model is formulated using 

factor graph notations and factor to pairwise graph conversion is used for applying belief 

propagation (BP) variant optimization methods. In experiments, they showed promising 

results using 2D images.

Here, we introduce a nonrigid volume registration method using a MRF based energy model. 

The proposed method extends the second-order MRF model proposed in [6] to work on 3D 

volumes. As displacements are 3D vectors, graph models in [6] are modified to involve 

ternary potentials for interlayer interactions in the decomposed scheme. Also, we apply a 

coarse-to-fine registration scheme for efficient computations and sub-pixel accuracy. In next 

sections, the proposed MRF energy model for registration is described, and optimization 

strategies are introduced. In experiments, the proposed method is compared with a first-

order MRF registration method [3] using uni- and multi-modal brain MRI data.

2. MRF ENERGY MODEL FOR REGISTRATION

For an input volume, we construct a set  which consists of nodes placed on each voxel. 

Then we generate a factor graph [7] ℱ = ( , ℱℋ) where ℱH is a set of factors for second-

order potentials. For each s ∈ , let xs be a label taking values in some discrete set ℒ. A 

function d: ℒ → ℝ3 maps a label to a corresponding 3D displacement where each label xs 

corresponds to a displacement vector d(xs) = (dx(xs), dy(xs), dz(xs)). In ℱ, an unary 

potential θs(xs) is defined for each node s ∈  and a second-order potential θstu(xs, xt, xu) is 

defined for each factor (s, t, u) ∈ ℱℋ.1

1When a factor a connects nodes s, t and u, we use (s, t, u) ∈ ℱℋ to represent a ∈ ℱℋ when we do not need to use factor 
representations explicitly.
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2.1. Second-Order Smoothness Prior

In [8], deformation energy of the mesh is usually defined as a sum of squared second 

derivatives of its nodes. This deformation energy describes the natural representation of 

inherent deformedness of the mesh which depends only on the relative locations of mesh 

nodes. Following the analysis on [6], we incorporate second-order smoothness priors into 

the energy model. To apply second-order smoothness priors, the ternary potential θstu(xs, xt, 
xu) is constructed on every collinear three nodes s, t and u as follows

(3)

By applying second-order smoothness priors, the final MRF energy model is

(4)

where ℱℋ is defined on a set of collinear three nodes2 on a cubic grid.

2.2. Data Cost Computation

The unary term θs(xs) of (4) which measures the cost when a node s has a label xs is defined 

as

(5)

This cost is calculated by the dissimilarity measure f using two volume patches centered on 

(sx, sy, sz) in a source volume and (sx+dx(xs), sy+dy(xs), sz+dz(zs)) in a target volume, 

respectively. As this representation is flexible, we can incorporate various dissimilarity 

measures to f. In this paper, we use the normalized cross correlation (NCC) for uni-modal 

registrations and the normalized mutual information (NMI) for multi-modal registrations. 

For computing NCC, we used cubic B-spline weighting scheme used in [3] with patch width 

4. For NMI, we compute local NMI [9] for each nodes with patch width 8.

3. OPTIMIZATION STRATEGY

Optimizing the proposed energy model (4) directly is time-consuming when a large search 

space ℒ should be applied to cover large displacements. To reduce computational burden, 

we apply a decomposed scheme with a coarse-to-fine scheme.

2For example, collinear nodes in x axis are placed on (x − 1, y, z), (x, y, z), and (x + 1, y, z).

Kwon et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1. Decomposed Scheme

Based on the scheme introduced in [10], we generate a new graph D by making three layers 

of nodes x, y and z corresponding to x, y and z displacements from the original nodes 

. This is only applicable when potentials for spatial priors are summation of a potential for 

each dimensional displacement. Using the upper bound approximation, we decouple 

smoothness priors (3) as follows

(6)

where i ∈ {x, y, z}. In the graph D, factor sets include  and  for intra-layer 

interaction potentials and  for inter-layer interaction potentials defined as

(7)

Then, the MRF energy on D is defined as follows

(8)

where . The unary term (5) is changed to ternary term (7) 

and its set is included in . The energy model applying decomposed scheme consists of 

ternary potentials only.

3.2. Coarse-to-Fine Scheme

To cover large displacements efficiently, we compute multilevel displacement in a coarse-to-

fine manner [9]. For a pyramidal dense descriptor representation, input volumes of finer 

level are smoothed and down-sampled for generating volumes of the coarser level. The 

displacements are computed on each level with propagated displacement offset which is 

scaled from the coarser levels. To achieve sub-pixel accuracy, we perform the sub-pixel 

refinement on the finest level.

3.3. Discrete Optimization Method

To optimize the proposed energy model (4) or (8), tree reweighted message passing (TRW) 

[11, 1] is applied. The TRW message passing provides the lower bound guaranteed not to 

decrease. A recent comparative study shows the TRW gives the state-of-the-art 

performances among the various discrete optimization methods [12]. As the TRW theory is 

built on the pairwise MRF, we need to convert factor graphs representations to pairwise 

interactions. The detailed conversion procedure is referred to [6]. As the proposed energy 
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model uses higher-order smoothness priors, converting to the hierarchical gradient node 

graph [13] is possible. Although optimization strategy we introduced decrease 

computational burden significantly, running TRW or BP on 3D volumes still require high 

computational power. However, as BP variant optimization algorithms have highly parallel 

structures, we implement TRW message passing algorithms for 3D registrations on GPU 

using NVIDIA CUDA. Using GPU, the time required for 1 cycle of whole message passing 

in a volume takes few seconds. The total time for registration of the proposed method takes 

about 20 ~ 40 minutes in the experiments.

4. EXPERIMENTS

In this section, we show registration results using uni- and multi-modal brain MRI data. The 

results are compared to those of a method using the first-order MRF energy model [3]. In 

experiments, λst = 6, Tst = 20, λstu = 6 and Tstu = 20 are used. For label widths, we use di ∈ 
{−4, …, 4} for the coarsest level, di ∈ {−(2 + (n − 1)/2), …, (2 + (n − 1)/2)} for nth level (n 
= 1 for the finest level) and di ∈ {−1.0,−0.75, …, 0.75, 1.0} for the sub-pixel refinement 

where i ∈ {x, y, z}. We use 4 levels for coarse-to-fine schemes and 2mm voxel spacing for 

finest level. All parameters are empirically chosen.

4.1. Registration Using Synthetically Deformed Data

We generate synthetically deformed data sets from 10 aligned T1 and T2 weighted brain 

MRI pairs. The deformed volume is generated by TPS [8] warping with control points 

(placed on grid with 30mm spacing) perturbed with random variation [−6mm,6mm] in each 

axis. More detailed procedure for generating synthetic images are described in [14]. The 

registration is performed between T1 and warped T1 volumes (uni-modal) and T1 and 

warped T2 volumes (multi-modal), respectively. As intensity characteristics between T1 and 

T2 images are not consistent, registrations between T1 and T2 are more challenging 

problem. In Table 1, we show averaged root mean square (RMSE), mean (MEAN) and 

standard deviation (STD) for the magnitude of differences (mm) between the ground truth 

and the recovered displacement fields. One can see the performances of the proposed 

method are better than the first order model. In Fig. 1, we show registration results for a 

selected case. In the figure, the proposed method produces smoother displacements with 

higher accuracy than the other method.

4.2. Registration Using Inter-Subject Data

For inter-subject registrations, we use IBSR V2.0 data set [15] which consists 18 T1 

weighted brain MRI volumes with manual segmentations. The volumes are scaled to have 

1mm voxel spacing in each axis. We select first data as a template and remaining data sets 

are registered to the template. The recovered displacement fields are used to deform the 

corresponding segmentations, and then deformed segmentations are compared to the manual 

ones. We show DICE score (DICE), the sensitivity (SENS) and the specificity (SPEC) for 

gray matters, white matters and ventricle in Table 2. For limited spaces, only two selected 

cases are shown. One can see the proposed method have better scores in terms of DICE, 

SENS and SPEC measures. In Fig. 2, we show Case 2 results. In the figure, the proposed 

method produces smoother displacements and better overlapping regions than the other 
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method. The proposed method especially works better in central regions on brain than the 

other method.

5. CONCLUSION

In this paper, we proposed a nonrigid registration method using the MRF model with 

second-order smoothness priors. The second-order prior enables us to generate smoother 

displacement fields with better accuracy. In experiments, we showed the proposed method 

outperformed a MRF energy model with first-order smoothness priors on uni- and 

multimodal brain MRI registrations using synthetically deformed data and inter-subject 

brain MRI data.

References

1. Kolmogorov V. Convergent Tree-Reweighted Message Passing for Energy Minimization. IEEE 
Trans Pattern Anal Mach Intell. 2006; 28(10):1568–1583. [PubMed: 16986540] 

2. Komodakis N, Tziritas G, Paragios N. Fast, Approximately Optimal Solutions for Single and 
Dynamic MRFs. CVPR. 2007

3. Glocker B, Komodakis N, Tziritas G, Navab N, Paragios N. Dense image registration through MRFs 
and efficient linear programming. Med Image Anal. 2008; 12(6):731–741. [PubMed: 18482858] 

4. Ou Y, Sotiras A, Paragios N, Davatzikos C. DRAMMS: Deformable registration via attribute 
matching and mutual-saliency weighting. Med Image Anal. 2011; 15(4):622–639. [PubMed: 
20688559] 

5. Sotiras A, Ou Y, Glocker B, Davazikos C, Paragios N. Simultaneous Geometric - Iconic 
Registration. MICCAI. 2010

6. Kwon D, Lee KJ, Yun ID, Lee SU. Nonrigid Image Registration Using Dynamic Higher-Order MRF 
Model. ECCV. 2008

7. Kschischang FR, Frey BJ, Loeliger HA. Factor Graphs and the Sum-Product Algorithm. IEEE Trans 
Inf Theory. 2001; 47(2):498–519.

8. Bookstein F. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans 
Pattern Anal Mach Intell. 1989; 11(6):567–585.

9. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Nonrigid Registration Using 
Free-Form Deformations: Application to Breast MR Images. IEEE Trans Med Imaging. 1999; 
18(8):712–721. [PubMed: 10534053] 

10. Shekhovtsov A, Kovtun I, Hlavác V. Efficient MRF Deformation Model for Non-Rigid Image 
Matching. CVPR. 2007

11. Wainwright MJ, Jaakkola T, Willsky AS. MAP Estimation Via Agreement on Trees: Message-
Passing and Linear Programming. IEEE Trans Inf Theory. 2005; 51(11):3697–3717.

12. Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C. A 
Comparative Study of Energy Minimization Methods for Markov Random Fields. ECCV. 2006

13. Kwon D, Lee KJ, Yun ID, Lee SU. Solving MRFs with Higher-Order Smoothness Priors Using 
Hierarchical Gradient Nodes. ACCV. 2010

14. Kwon D, Yun ID, Lee KH, Lee SU. Efficient Feature-Based Nonrigid Registration of Multiphase 
Liver CT Volumes. BMVC. 2008

15. Internet Brain Segmentation Repository (IBSR). http://www.cma.mgh.harvard.edu/ibsr

Kwon et al. Page 6

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cma.mgh.harvard.edu/ibsr


Fig. 1. 
Selected results for Synthetically Deformed Data. Slice images from original T1, 

synthetically deformed T1 and T2 volumes shown in (a), (b) and (c), respectively. The 

displacement vectors are shown using spherical coordinate (ρ, θ, ϕ). The color coded 

displacements are shown in (d) ρ-θ and (e) ρ-ϕ. The ground truth displacement used for 

generating (b) and (c) is shown in (d). The recovered displacements using First-Order [3] 

and Proposed shown in (g) and (h), respectively. In (f–h), left and right figure correspond to 

ρ-θ and ρ-ϕ parts of the displacements.
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Fig. 2. 
Case 2 results for Inter-Subject Data. Slice images from source T1 and target T1 volumes 

are shown in (a) and (b). The recovered displacements using First-Order [3] and Proposed 

shown in (f) and (j), respectively. We use color coded displacements along with Fig 1. 

Overlapped segmentations of source and deformed target from initial, (f) and (j) are shown 

in (c–e), (g–i) and (k–m), respectively. In these figures, overlapped regions are colored white 

and non-overlapped regions are colored darker gray for source and light gray for deformed 

target.
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Table 1

Registration Errors for Synthetically Deformed Data

Data Method RMSE MEAN STD

uni-modal

Initial 3.42 3.18 1.27

First-Order[3] 1.01 0.84 0.56

Proposed 0.49 0.38 0.31

multi-modal

Initial 3.42 3.18 1.27

First-Order[3] 1.44 1.29 0.64

Proposed 1.10 1.01 0.41

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 June 14.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kwon et al. Page 10

Ta
b

le
 2

R
eg

is
tr

at
io

n 
E

rr
or

s 
fo

r 
In

te
r-

Su
bj

ec
t D

at
a

C
as

e
M

at
te

r
M

et
ho

d
D

IC
E

SE
N

S
SP

E
C

C
as

e 
1

G
ra

y

In
iti

al
0.

62
2

0.
67

9
0.

98
0

Fi
rs

t-
O

rd
er

[3
]

0.
84

3
0.

84
6

0.
99

3

Pr
op

os
ed

0.
84

7
0.

85
0

0.
99

3

W
hi

te

In
iti

al
0.

58
9

0.
65

4
0.

98
8

Fi
rs

t-
O

rd
er

[3
]

0.
79

7
0.

79
8

0.
99

5

Pr
op

os
ed

0.
80

4
0.

80
4

0.
99

5

V
en

tr
ic

le

In
iti

al
0.

39
8

0.
72

1
0.

99
9

Fi
rs

t-
O

rd
er

[3
]

0.
76

3
0.

87
2

1.
00

0

Pr
op

os
ed

0.
77

5
0.

89
7

1.
00

0

C
as

e 
2

G
ra

y

In
iti

al
0.

61
6

0.
72

1
0.

97
9

Fi
rs

t-
O

rd
er

[3
]

0.
83

6
0.

86
5

0.
99

1

Pr
op

os
ed

0.
84

0
0.

88
1

0.
99

1

W
hi

te

In
iti

al
0.

64
3

0.
64

6
0.

98
1

Fi
rs

t-
O

rd
er

[3
]

0.
79

8
0.

76
2

0.
99

6

Pr
op

os
ed

0.
81

3
0.

77
5

0.
99

6

V
en

tr
ic

le

In
iti

al
0.

60
8

0.
72

3
1.

00
0

Fi
rs

t-
O

rd
er

[3
]

0.
81

8
0.

78
0

1.
00

0

Pr
op

os
ed

0.
84

3
0.

81
6

1.
00

0

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 June 14.


	Abstract
	1. INTRODUCTION
	2. MRF ENERGY MODEL FOR REGISTRATION
	2.1. Second-Order Smoothness Prior
	2.2. Data Cost Computation

	3. OPTIMIZATION STRATEGY
	3.1. Decomposed Scheme
	3.2. Coarse-to-Fine Scheme
	3.3. Discrete Optimization Method

	4. EXPERIMENTS
	4.1. Registration Using Synthetically Deformed Data
	4.2. Registration Using Inter-Subject Data

	5. CONCLUSION
	References
	Fig. 1
	Fig. 2
	Table 1
	Table 2

