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Coarctation of the aorta (CoA), is an obstruction of the

aortic arch present in 5 − 8% of congenital heart diseases.

For children older than a year, CoA is increasingly treated by

aortic stenting instead of surgical repair. In pediatric cardiol-

ogy, CMR is accepted as the standard non-invasive imaging

modality to assess the aortic arch in it’s entire spatial context

[1]. Interpreting such 3D datasets are required to assess the

underlying anatomy during both diagnosis and therapy plan-

ning phases. However this process is time consuming and

varies with operator skills. Within this study we propose – for

the first time in our knowledge – a method of automatic seg-

mentation of the lumen of thoracic aorta and main branches.

The personalized model of the aorta and the supra-aortic ar-

teries, automatically estimated from 3D CMR data, will pro-

vide better understanding of the complexity of pathology and

assist the cardiologist to choose the best treatment and timing

of repair. A hierarchical framework based on robust machine-

learning algorithms is proposed to estimate the personalized

model parameters. Experiments throughout 212 3D CMR

volumes demonstrate model estimation error of 3.24 mm and

average computation time of 8 sec. combined with clinical

evaluation on 32 patients.

1. INTRODUCTION

Coarctation of the aorta and bicuspid aortic valve are common

congenital heart defects which affect 5−8% of the annual live

births in USA [2]. Surgery is considered as ”gold standard”

for CoA and Bicuspid Aortic Valve (BAV) treatment, and re-

cently balloon angioplasty and stenting are investigated for

effectiveness [3] and increasingly applied after the neonatal

period.

Patients with successful coarctation repair during their

childhood are still confronted with increased probability of

cardiovascular complications: restenosis, residual and recur-

rent systemic hypertension, aortic aneurisms and dissections,

hemopericardium and associated aortic valve malformations,

and premature coronary artery disease [4, 5]. These clinical

findings underline the important need for accurate anatom-

ical evaluation of the aorta during diagnosis, treatment and

follow-up procedures based on Cardiac Magnetic Resonance

(CMR) imaging [6]. To this end, we propose an automatic

and accurate method for segmenting the thoracic arterial tree

(including the ascending aorta, transverse arch, distal de-

scending aorta and three supra aortic arteries), to allow fast

and reproducible assessment of the lumen. The inclusion

of the supra aortic arteries in our segmentation was dictated

by their role played in CoA situations: these branches of

the aorta supply the head and arms with oxigenated blood

and account for 30 − 40% of the blood flow leaving the

aorta, and thus are subject to higher blood pressures before

repair. The segmented vessel models allow further automated

lumen measurements (for e.g. catheter selection) severity

assessment of coarctation, dilation and aneurisms. Further

possibilities include generation of boundary conditions for

patient-specific hemodynamics simulations of the region. To

the best of our knowledge, this is the first time in literature

to present automatic segmentation of aorta and supra aortic

arteries from CMR.

Literature contains existing work from multiple authors

addressing delineation of the aorta.

Zheng et al. [7] proposed an automatic detection approach

for transcatether aortic valve implantation procedures, focus-

ing on pre- and intra-operative contrast enhanced CT and Dy-

naCT images. Despite remarkable robustness, this work is

not considering the supra aortic arteries. Recently an exten-

sive study was carried out, exclusively focusing on the carotid

artery [8] bifurcation, concluding that accurate automatic seg-

mentation is feasible. Their results are limited to high reso-

lution CTA images. There are a few approaches that employ

CMR images[9, 10]. Both methods are semi-automatic, re-

quired user interaction and do not include the supra-aortic ar-

teries in their final model.

Within this paper we present a personalized model of the

aorta and the supra-aortic arteries automatically estimated

from CMR data acquired with different protocols and se-

quences. A two stage hierarchical machine-learning based

approach is proposed to first detect the model of the aorta and

then the supra-aortic arteries (Sec. 2). For each hierarchi-

cal layer robust detectors are trained with PBT[11] and 3D
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Fig. 1. Lumen segmentation pipeline: a) anatomy localization (bounding box) b) centreline extraction c) non-rigid boundary

refinemet d) complete aortic model composed by the aorta and the supra-aortic arteries

Haar and steerable features [12]. The coarse-to-fine model

estimation process starts by first localizing the aortic root and

arch, followed by 2D circle tracking (Fig. 2.2) and non-rigid

boundary refinement (Fig. 1). In the second phase the search

ranges of the supra-aortic detectors are constrained by the

previously estimated models. Finally, we employ a sequence

of forward and backward projection to/from Eulerian rep-

resentation of the separately detected models to retrieve the

composite Lagrangian arterial tree geometry (Fig. 1(d)).

The accuracy of our method is demonstrated on a set of

212 3D volumes (99 patients) with wider range of morpho-

logical and pathological variations (Sec. 3). In Sec. 3.1

we demonstrate the significant correlation between measure-

ments manually performed by our clinical collaborators and

derived from our model.

2. METHOD

2.1. Global Anatomy Localization

For each anatomy (aortic root, aortic arch, brachio artery, left

common carotid, left subclavian artery) we define a corre-

sponding bounding box (θroot, θarch, θbrachio, θleft common,

θleft subclavian) parameterized by an affine transformation

θ = (X,Y, Z, α, β, χ, Sx, Sy, Sz). The position of each

bounding box is computed as the centre of gravity of the

corresponding manually annotated mesh. Correspondingly,

the orientation is given by the first three PCA eigenvectors

which correspond to the largest eigenvalues and the scale is

computed by searching for the furthest mesh point along the

orientation axis.

We formulated the anatomy localization task as a classifi-

cation problem and trained discriminative detectors relying on

robust features. Efficient learning in high dimensional space

is performed by marginalizing the search space by means of

MSL into subspaces which results in gradual increase of de-

grees of detector freedom:

Σ1 ⊂ Σ2 ⊂ · · · ⊂ Σn = Σ

Consequently, the parameter estimation problem is splitted

into three steps where classifiers, parameterized by the cur-

rent subset of the affine values, are sequentially trained on the

subspaces: position, position-rotation and full affine transfor-

mation. By decomposing the original search space as follows:

Σ1 = (tx, ty, tz)
Σ2 = (tx, ty, tz, �αx, �αy, �αz)
Σ3 = (tx, ty, tz, �αx, �αy, �αz, sx, sy, sz)

the target posterior probability can be expressed as:

p(θ(t)|I(t)) = p(tx, ty, tz|I(t))
p(�αx, �αy, �αz|tx, ty, tz, I(t))
p(sx, sy, sz|�αx, �αy, �αz, tx, ty, tz, I(t))

A further speed improvement is achieved by using a pyramidal-

based coarse-to-fine approach and searching in a subsampled

low-resolution (3mm) image first.

2.2. Personalized Model Detection

Aortic Model Estimation. Due to the high anatomic vari-

ation of the aorta, especially the ascending/descending part

caused by pathologies and differences in age we propose a

part-based approach for detecting the aortic model by split-

ting the aorta in four patches: aortic root, ascending aorta,

aortic arch and descending aorta. First, the detected bound-

ing boxes θroot, θarch initialize the surface by projecting a

mean shape Mroot,March averaged over the training data set,

into the corresponding bounding box. The transformed mean
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model provides accurate global fitting into the patient’s spe-

cific anatomy. However, further local processing for precise

object delineation is required. A boundary detector trained by

PBT is applied along the normal of each discrete 3D boundary

point to test a set of hypothesis and move the surface towards

the position with the highest probability response. Smooth

boundary is obtained by projecting the detected model into

the pre-computed PCA shape space [13]. The same approach

is applied to estimate the aortic arch.

A tracking algorithm is used to deal with the different

variation of the length of the ascending and the descending

patches. As the intersection of both patches with an image

slice is close to circle, we trained a 2D circle detector to esti-

mate primitive circular structures between the aortic root and

the arch (ascending patch). The descending part is estimated

by tracking circles starting from the aortic arch towards the

patient’s feet. The algorithm stops if the volume border has

been reached. At each image slice the trained 2D detector

assigns each voxel with a probability of being on the circum-

ference of the lumen. In order to reduce outliers, the search

ranges of the detector are constrained by the size of the previ-

ously detected circle.

Fusing all separately estimated aortic patches together

into a single model, we get an initial, close to the true bound-

ary, estimate of the whole aorta. As circle do not precisely

capture local deformation of the aorta, further non-rigid re-

finement by trained detector is performed for precise object

delineation.

The robustness of the tracking method is shown by suc-

cessfull handling of post-stenting images that inhibit CMR

signal dropout at the location of the stent (the dark region il-

lustred in Fig. 2.2).

Fig. 2. Left: ascending and descending aortic patches af-

ter 2D circle detection. Right: final non-rigid refined aortic

model

Supra-Aortic Model Estimation. The supra-aortic ar-

teries are estimated in same manner by first localizing each

artery separately with a bounding box, placing a mean model

within the estimated box and applying a trained boundary de-

tector for precise object delineation. However, due to the high

variation of the arteries regarding pose and shape, detecting

them with constraints is beneficial. Therefore, previously es-

timated anatomies are used to impose constraints to the detec-

tor: we use the position and orientation of the aortic arch to

crop the volume and reduce the search ranges of the brachio-

cephalic artery detector. Testing a set of hypothesis in such

sub-volume reduces significantly the number of outliers and

false positives. The search space for each other supra-aortic

artery is gradually reduced by the aortic arch and the previ-

ously detected artery.

3. EXPERIMENTAL RESULTS

We demonstrate the performance of the proposed hierarchical

detection framework on 99 Patients (212 3D CMR Volumes).

Data were collected from 5 different hospitals and acquired

using heterogeneous CMR acquisition protocols/sequences

with different CMR devices (Siemens, Philips and GE).

Each volume in the data set is associated with annota-

tion, manually generated, which is considered as ground truth

for the learning algorithm. The personalized complete aortic

model estimation accuracy was evaluated by using the point-

to-mesh metric. For each point of the estimated model we

compute the Euclidean distance to the closest point of the

associated, manually generated, ground-truth model. Table

1 summarizes the estimation performance for each detection

step.

mm Mean Median 80% 90%

aorta 2.29± 1.74 1.95 2.37 2.67

brachiocephalic 3.40± 1.89 2.90 4.33 5.60

left common 4.59± 3.58 3.16 5.99 8.44

left subclavian 4.64± 3.33 3.06 6.19 8.90

supra-aortic 4.21± 2.90 3.04 5.05 7.64

complete model 3.24± 2.32 2.49 3.72 5.15

Table 1. Detection performance accuracy (in mm)

3.1. Clinical Evaluation

The quantitative capabilities of our system are demonstrated

on 32 patients with aortic anomalies (age: 5-36 years, 17 with

CoA and 15 with BAV and ascending aorta dilation) by com-

paring a set of morphological measurements[6] automatically

derived by our personalized model to measurements manu-

ally extracted from our clinical collaborators. The aortic min

and max diameter were measured from 3D SSFP CMR se-

quence at five segments: aortic sinus (AS), sino-tubular junc-

tion (STJ), ascending aorta (AAO), transverse arch (TA), and
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descending aorta (DA). Statistical results significantly corre-

lated (p < 0.001, r = 0.94) between model-based and man-

ual measured min and max diameters. Table 2 summarizes

the mean measurement errors for each segment separately.

mm AS STJ AAO

min 1.61± 0.9 2.07± 1.5 1.61± 1.9
max 1.56± 1.3 1.28± 1.0 1.56± 1.3

mm TA DA

min 1.70± 1.2 0.8± 0.5
max 1.34± 1.1 0.92± 0.6

Table 2. Comparison between manual and model-based de-

rived measurements

These measurements are crucial in clinical settings for op-

timal treatment selection and decision making. The mode-

based derived size of each segment and the exact location of

the coarctation will facilitate the decision on the right timing

and type of surgical approach in CoA and (AAO) dilation due

to BAV. Especially in patients with BAV and dilatation of the

proximal AAO, where several surgical options are influenced

by the location and extent of AAO dilation and the functional

status of the valve, the model-based assessment of the aortic

anatomy and morphology will advance the choice between

Bentall versus Yacoub or David surgical approach [14].

4. CONCLUSION

This paper proposes a method for automatic estimation of

personalized, complete aortic model which includes the aorta

and the supra-aortic arteries. Two stage hierarchical approach

was introduced for the coarse-to-fine model parameter esti-

mation. In each stage efficient and robust machine-learning

algorithm were presented to guide the segmentation. The es-

timated complete aortic model is utilized for better morpho-

logical and physiological assessment of the aortic anatomy.

Accurate and precise model-based derived measurements are

facilitating for optimal treatment selection, decision making

and timing of repair. In future work, we would like to extend

the method to 4D, temporal data and investigate explicit stent

localization.
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