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Abstract
Traumatic brain injury (TBI) due to falls, car accidents, and warfare affects millions of people
annually. Determining personalized therapy and assessment of treatment efficacy can substantially
benefit from longitudinal (4D) magnetic resonance imaging (MRI). In this paper, we propose a
method for segmenting longitudinal brain MR images with TBI using personalized atlas
construction. Longitudinal images with TBI typically present topological changes over time due to
the effect of the impact force on tissue, skull, and blood vessels and the recovery process. We
address this issue by defining a novel atlas construction scheme that explicitly models the effect of
topological changes. Our method automatically estimates the probability of topological changes
jointly with the personalized atlas. We demonstrate the effectiveness of this approach on MR
images with TBI that also have been segmented by human raters, where our method that integrates
4D information yields improved validation measures compared to temporally independent
segmentations.

Index Terms
4D pathology segmentation; longitudinal MRI; topological change estimation; atlas construction

1. INTRODUCTION
Improved therapy in traumatic brain injury (TBI) is an important driving biological problem
for the medical community as TBI is a major cause of death and disability worldwide,
especially in children and young adults. It is a significant problem in health care as it affects
about 1.7 million people in the United States every year [1]. Robust, reproducible
segmentations of longitudinal magnetic resonance (MR) images with TBI are crucial for
quantitative analysis of pathology and of recovery to measure treatment efficacy. A
challenging problem for longitudinal segmentation of TBI images is the change of brain
structure due to lesions (primarily swelling/edema and bleeding). At different time points
and stages, lesions may deform and they can also disappear or appear due to intervention,
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recovery or formation of new injuries. Thus, 4D segmentation methods for TBI need to be
able to map images over time and handle topological changes.

Longitudinal segmentation algorithms [2, 3] use information from all time points to achieve
optimal results. This requires registration of each image to a reference time point or an atlas.
Many image registration methods assume that there are no topological changes between
images and use diffeomorphic (smooth and invertible) mappings. However, for longitudinal
images with TBI this assumption no longer holds and it is necessary to model topological
changes (Fig. 1).

Several researchers have proposed methods [4, 5, 6, 7, 8] for registering images with
topological changes due to missing or newly appearing structures. Periaswamy and Farid
proposed a registration method for images with missing correspondence in which
topological changes were detected through difference of image intensities [4]. Li et al.
proposed a registration method using Riemannian embedding that accounts for deformation
and intensity changes [5]. Chitphakdithai and Duncan proposed a postresection intensity
prior for alignment of preoperative and postresection brain images [6]. Niethammer et al.
proposed a registration method for TBI images using geometric metamorphosis that maps
known lesion boundaries over time [7]. Ou et al. proposed a generic deformable registration
method using attribute matching and mutual-saliency weighting [8]. These image
registration methods do not provide anatomical information unlike segmentation and atlas
construction methods.

In this paper, we propose a longitudinal segmentation method that relies on personalized
atlas construction and topological change estimation. The method iteratively estimates the
image appearance model and the spatial anatomical model that undergoes diffeomorphic
deformation and non-diffeomorphc/topological changes. We define a novel objective
function for personalized atlas construction with topological changes. This objective
function gives rise to joint estimation of anatomical priors, diffeomorphic mappings, and the
probability of topological changes for a longitudinal MR image sequence.

2. METHOD
2.1. Estimation of Image Appearance Model

Given multimodal images at time point t denoted by It ={I(x1)… I(xN)}t with N voxels
indexed by positions x and Mt number of channels, we use mixtures of Gaussians to model
the data following van Leemput et al. [9]. We estimate the Gaussian mixture parameters that
maximizes the log likelihood function for each time point t:

(1)

where  is the multivariate Gaussian probability distribution with mean  and

covariance , Ct is the number of classes at time point t, and  is the spatial prior for
class c at time t.

The number of classes Ct at different time points in longitudinal images with TBI typically
varies because hemorrhagic lesions (bleeding) and non-hemorrhagic lesions (swelling/
edema) may disappear in follow-up scans due to recovery. We address the problem of
mapping variable numbers of lesion classes by combining the posteriors of lesion classes
(bleeding and edema) into one. The combination of lesion posteriors yields a unified class
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posterior for all lesions and thus gives us equal number of classes C for the posteriors

 at each time point t that is used to construct personalized atlases.

2.2. Personalized Atlas Construction

We use the posteriors  to build a personalized atlas At at each time point t.
We smoothly subdivide the image into diffeomorphic and non-diffeomorphic regions using
the probability of topological change denoted by Γt ∈ [0, 1]. We define the personalized
atlas at time point t using Γt as

(2)

The personalized atlas At is a combination of an atlas P̄ that has been mapped using the
diffeomorphic mapping ht and a temporally specific atlas Qt (Fig. 2). The parameters that
define the personalized atlas is chosen such that the diffeomorphic component (weighted by
(1 − Γt)) matches P̄ to Pt, and the non-diffeomorphic component (weighted by Γt) matches
Qt to Pt. Thus, personalized atlas construction is formulated as a minimization of the energy
function,

(3)

where R(·) denotes the regularization term that enforces ht to be diffeomorphic mappings
and w is the scalar weight for the regularization term for Γt that enforces sparsity.

We take the derivative with respect to Qt and Γt and set the derivatives as zero to get the
updates for Qt and Γt. The temporally specific atlas Qt is estimated from

(4)

Obtaining Qt = Pt. The probability of topological change Γt is estimated using

(5)

where P ̄t is P̄ ∘ ht. Setting ∇Γt Ψ(x) = 0, we get

(6)

The intuition for Γt update is that when correspondence exists between two time points (no
topological change), the temporal difference ||Pt(x) − P̄t(x)||2 is small, so Γt(x) → 0; when
there is no correspondence, the temporal difference is large, so Γt(x) → 1/(1 + w). Our
topological change estimation Γt based on optimization of Ψ provides a justification for the
weight function in [4]. The estimation of the diffeomorphic atlas P̄ and the diffeomorphic
mapping ht yields a method identical to standard computational anatomy algorithms [10],
where we use modified gradient equations concerning the diffeomorphic component.
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2.3. Segmentation Algorithm
The segmentation algorithm that combines the estimation of the image appearance model
and the construction of personalized atlas is presented below. We use user input that
indicates the areas showing major lesions and lesion types as spheres to initialize the
algorithm. These spheres function as rough estimates of the segmentations that will be
refined by our algorithm by adding or removing lesions as necessary.

Pt ← temporally independent segmentation with user input

Γt ← 0.5

Repeat until convergence

 P̄t ← P̄t − ε∇P̄t Ψ

 ht ← ht − ε∇ht Ψ

 Qt ← Pt

 Update Γt using Equ. (6)

 At ← (1 − Γt)P̄ ∘ ht + ΓtQt

 Pt ← segmentation using prior Πt = At

3. RESULTS AND VALIDATION
We apply our framework to multimodal image data of three subjects with TBI. Each subject
was scanned at two time points: acute scan at ≈ 3 days and chronic scan at ≈6 months. The
image data of each subject include T1, T2, FLAIR, and GRE modalities. Acute and chronic
images of Subject I is shown in Fig. 3 where non-hemorrhagic lesions (edema/swelling) are
shown as hyperintense regions in FLAIR while hemorrhagic lesions (bleeding) are shown as
hypointense regions in T2 and GRE.

We validate our method by comparing our results to manual segmentations by a human
expert that act as ground truth. For comparison, we also show results of independent 3D
segmentations at each time point. We use the Dice coefficient as our comparison measure,
which measures the volumetric overlap of two binary segmentations and lies in [0, 1]. Table.
1 shows the comparisons of both methods against the ground truth. In this experiment, initial
Γt is 0.5 and w is 1.0. The Dice coefficient values are relatively low due to the complex
shapes of the small lesions, but important are the differences between independent and joint
analysis of the two time points.

Coronal view of the final posteriors of subject I using our framework are shown in Fig. 4.
The evolving posteriors Pt of subject I are shown in Fig. 5. The initial posteriors for both
non-hemorrhagic and hemorrhagic lesions are suboptimal, and the posteriors are improved
at each iteration of our algorithm. In particular, the initial posteriors for hemorrhagic lesions
are incorrect as the user initialization covers the boundary between lesion and white matter.
However, the final posteriors of hemorrhagic lesions provides segmentation that matches the
observed image data. Fig. 6 shows the evolving personalized atlas At of lesion class of
subject II. At changes gradually to match Pt because we estimate personalized atlases that
are similar to the segmentations at each time point.

4. CONCLUSIONS
We have presented a segmentation method for longitudinal MR images of TBI patients that
uses personalized atlas construction and topological change estimation. Our method
combines 4D information through the creation of personalized atlas that explicitly handles
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diffeomorphic and non-diffeomorphic temporal changes. The method is robust to
topological changes caused by the injury and the recovery process in TBI. We have shown
that the method provides improved results compared to temporally independent analysis
which ignores temporal relationships.

Our proposed approach relies on user input to localize samples of various lesion types. In
the future, we plan to automate this process using prior knowledge on the appearance of
lesions in different MR modalities. The method generates complete 4D segmentations of
healthy structures as well as lesions which has potential for quantifying changes over time
due to recovery under individually chosen treatment. Automated segmentation and
quantitative analysis of longitudinal changes of brain tissue and lesions may give clinicians
the highly valuable information about future improved treatment and therapeutic
interventions for TBI patients.
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Fig. 1.
Illustration of topological changes in longitudinal MR images with TBI. Left is the acute
baseline T2 image, right the chronic followup T2 image, each overlaid with a sketch mock
figure. Red indicates lesions with topological changes over time (either disappearing or
appearing lesions). Green indicates lesions that deform without topological changes.
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Fig. 2.
Construction of a personalized spatiotemporal atlas using diffeomorphic and non-
diffeomorphic components. The diffeomorphic component is the temporally global atlas P̄
that is mapped to each time point while preserving topology of P̄. The non-diffeomorphic
components are the temporally local pdfs Qt at each time point t that may change the
topology between different time points. Regions that change diffeomorphically are colored
in green, while regions that change topology are colored in red.
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Fig. 3.
Axial views of acute and chronic images of Subject I.
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Fig. 4.
Segmentations of our method for acute images of Subject I. AHL and ANHL are acute
hemorrhagic and non-hemorrhagic lesions (edema), CL is chronic lesion (necrosis).
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Fig. 5.
The evolving posteriors Pt of the lesion classes for the acute images of Subject I. Top left is
acute T2 image followed by the posteriors of non-hemorrhagic lesion from iteration 1 to 4,
bottom left is acute FLAIR image followed by the posteriors of hemorrhagic lesion from
iteration 1 to 4.
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Fig. 6.
The evolving personalized atlas At generated by our method for the acute (t = 1) and chronic
(t = 2) images of Subject II. Top left is acute FLAIR image followed by the A1 from
iteration 1 to 4, bottom left is chronic FLAIR image followed by the A2 from iteration 1 to
4.
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Table 1

Dice values comparing semi-automatic segmentation to ground truth, using temporally independent
segmentations and our approach. AHL and ANHL are acute hemorrhagic and non-hemorrhagic lesions, CL is
chronic lesion.

Subject Dice values

Lesion types ANHL AHL CL

Indepedent analysis

I 0.5311 0.5135 0.2576

II 0.2444 0.5107 0.1367

III 0.4747 0.2940 0.1963

Joint analysis

I 0.6069 0.5683 0.3383

II 0.5009 0.5194 0.5578

III 0.6563 0.3557 0.1999
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