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ABSTRACT

Accurate segmentation of lymph nodes in head and neck (H&N)
CT images is essential for the radiotherapy planning of the H&N
cancer. Atlas-based segmentation methods are widely used for the
automated segmentation of such structures. Multi-atlas approaches
are proven to be more accurate and robust than using a single atlas.
We have recently proposed a general Markov random field (MRF)-
based framework that can perform edge-preserving smoothing of the
labels at the time of fusing the labels itself. There are three main
contributions of this paper: First, we reformulate the “shape based
averaging” (SBA) fusion method to fit into the general MRF-based
fusion framework. Second, we evaluate the following fusion algo-
rithms for the segmentation of H&N lymph nodes: (i) STAPLE, (ii)
SBA, (iii) SBA+MRF, (iv) majority voting (MV), (v) MV+MRF,
(vi) global weighted voting (GWV), (vii) GWV+MRF, (viii) local
weighted voting (LWV) and (ix) LWV+MRF. Finally, we also study
the effect varying the number of atlases on the performance of the
above algorithms.

Index Terms— Atlas-based segmentation, label fusion, lymph
nodes, radiotherapy, MRF, IMRT.

1. INTRODUCTION

Intensity-modulated radiotherapy (IMRT) is a high precision tech-
nique used for radiation treatment of different tumor locations of the
patients. This requires accurate delineation of various structures on
3-D CT images. One of the main challenges for the widespread im-
plementation of IMRT for head and neck (H&N) cancer is, obtaining
automated and accurate segmentation of lymph nodes.

Lymph nodes are constructed volumes in H&N CT images; they
have poor contrast in the CT images, and do not posses distinctly
visible boundaries with the surrounding structures [1, 2]. Hence,
automated segmentation of lymph nodes is a challenging task and,
incorporation of some prior knowledge is required for accurately de-
lineating them. Atlas-based segmentation methods are widely used
for exploiting the prior anatomical knowledge [3].

It is well known that the segmentations obtained by the appro-
priate fusion of results obtained from multiple atlases are more ac-
curate and robust than the results from a single atlas [4, 5, 6, 7]. The
widely used fusion methods include STAPLE [8, 9], majority voting
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(MV) [4, 5], global weighted voting (GWV) [5, 6], local weighted
voting (LWV) [5, 6, 7], and shape based averaging (SBA) [10]. One
of the issues with many of the fusion methods is that, although the
segmentation results from each individual atlas are contiguous, the
merged segmentation results can contain unwanted discontinuities
like holes and islands.

In order to deal with such discontinuities in the segmenta-
tions, the final results are generally post-processed using different
approaches like Gaussian smoothing [7], and morphological oper-
ations [11]. However, such post-processing approaches have many
disadvantages. In particular, they handle the fusion and smoothing
as two different, independent problems, and do not preserve the
edges of the labels. To address this issue, a Markov random field
(MRF)-based framework has been proposed recently in [12]. It
combines the tasks of fusion and smoothing, and performs edge-
preserving smoothing at the time of fusing the labels itself. It is also
shown in [12] that, MV, GWV, LWV methods can be reformulated
to profit from this MRF-based framework.

In this paper, we further adapt the MRF-based general frame-
work to SBA method. We evaluate all the above mentioned methods
in the specific context of H&N lymph nodes segmentation. We also
study the effect of varying number of atlases on these methods. The
rest of the paper is organized as follows. In the next Section, we
present the general MRF-based framework and the reformulation of
SBA method. A detailed evaluation for lymph nodes segmentation is
presented in Section 3. The discussion and conclusions are presented
in Section 4.

2. FUSION METHODS

Let V be the number of voxels in the image. Let Yp denote the
label assigned to the pth voxel in the output image. Let Y be the
set containing labels assigned to each voxel in the output image, i.e.,
Y = {Y1, · · ·YV }. Then, the atlas fusion is formulated as a general
energy minimization problem of the form:

Y ∗ = argmin
Y
{Edata(Y ) + λEsmooth(Y )} , (1)

where the first term is a data term (unary term), and it will be de-
fined in such a way that it reaches to a minimum value when the
chosen fusion criteria has been met; the second term is a smoothness
term (pairwise term), and in the current context, it should penal-
ize for irregular distribution of labels while allowing for the edge-
discontinuities. λ is a weighting parameter between the data term
and smoothness term.



The reformulation of MV, GWV and LWV methods to fit into
the above MRF-based framework has been presented in [12]; hence,
we skip those details here, and refer the readers to [12]. We now
show how the SBA method can be reformulated, and, this is one of
the contributions of this paper.

Shape Based Averaging (SBA) [10]: When compared to other
approaches like MV, GWV, LWV methods, SBA looks at the fu-
sion problem from a different perspective. For each voxel in the
output image, SBA assigns a label that results in minimum “signed
Euclidean distance” (SED) when summed up over all the input la-
bel images; note that the signed Euclidean distances are computed
with respect to each label. Please refer to [10] for a nice intuitive
illustration of this approach, and we now present its mathematical
formulation.

Let N be the number of atlas images. Let Xj represent the j th

input labeled image (corresponding to j th atlas) after applying the
transformation that maps the j th atlas to the output intensity image.
Let uj

p(l) represent the SED for label:l, at pth voxel in Xj . Now, for
each voxel p, SBA assigns independently, that label which results in
the minimum value of the following summation:

Yp = argmin
l

1

N

N∑
j=1

uj
p(l).

Unlike other fusion methods, the label selection in SBA involves
computation of distance metric, and these distances can be negative
value also. But, for the convergence of the MRF-based model to a
global optimum, all the energy terms should be nonnegative. For this
purpose, we modify the original uj

p(l) to the following:

ûj
p(l) =


uj
p(l) + uth, if −uth ≤ uj

p ≤ uth;

0, if uj
p < −uth;

2uth, if uj
p > uth,

where uth (>0) is a threshold applied to uj
p(l). Notice that, the

above reformulation is equivalent to first thresholding uj
p(l) to the

range: [−uth, uth], and then, adding an offset value of uth and
thereby, modifying the range to: [0, 2uth]. The thresholding is done
for making the algorithm sensitive to even small changes in the SED,
and the offset value is added to make all SED values nonnegative.
Adding offset value alone without thresholding makes the algorithm
insensitive to fine-changes in the SED. Note that, when uth is large
enough compared to the SEDs for adjacent labels, minimizing the
above equation results in exactly the same labeling as the original
SBA in [10].

Regarding the smoothness term, we use here the widely used
edge-preserving Potts model [13]. However, one could even use
models that are specific to a given application, that incorporate prior
knowledge about the spatial distribution of the labels. Let ℵp be
the set of all voxels in the predefined neighborhood of pth voxel.
Let δ represent a Kronecker delta function. Then, with the above
mentioned data model, the Potts model-based smoothness term, the
energy equation (1) can be rewritten as follows:

argmin
Y

1

N

V∑
p=1

N∑
j=1

ûj
p(Yp) + λ

V∑
p=1

∑
∀q∈ℵp

wpq (1− δ(Yp, Yq)) .

Energy equation of the form (1) is ubiquitous in other com-
puter vision problems like image denoising, segmentation and stereo
matching; there are various efficient MRF optimization methods for
solving them [13]. In this paper, we use the graph cuts expansion
method [14] since it guarantees convergence to a global optimum
for the current model.

3. RESULTS

3.1. Data

The data set contains 12 atlas images and 8 patients’ images to be
segmented; these CT images acquired at Divisions of Radiotherapy,
Geneva University Hospital (HUG), during routine clinical practice.
they typically have a resolution of 1mm×1mm×1mm. We con-
sidered 10 lymph node volumes for automated segmentations, and
are: (i) IB-Left, (ii) IB-Right, (iii) IIA-Left, (iv) IIA-Right, (v) IIB-
Left, (vi) IIB-Right, (vii) III-Left, (viii) III-Right, (ix) IV-Left, (x)
IV-Right. These structures have been manually delineated by an ex-
pert oncologist, according to the guidelines given in [2], and these
manual segmentations are considered as ground truth segmentations.

Regarding the registration, all the atlases are registered to each
patient to be segmented. An initial affine registration is performed
followed by a region-based registration, and a final pixel-based non-
rigid registration. We skip here details about registration methods
since the main focus of this work is label fusion, and this is inde-
pendent of the registration algorithms used. we refer the readers
to [15, 12] for more details on registration methods and parameters.

Fusion methods evaluated in this paper are: STAPLE, SBA, MV,
GWV and LWV. All these methods (except STAPLE) are evalu-
ated for both, ‘with’ and ‘without’ the MRF-based smoothness term.
Those methods with the smoothness term are denoted with a suffix:
“+MRF” to the name of the method. The performance of these meth-
ods has been evaluated for varying number of atlases also. For each
patients’ image, the atlases are ordered based on the overall dice
similarity measure between the ground truth and the segmentation
results obtained from single atlases.

For MV+MRF, GWV+MRF and LWV+MRF methods, λ is em-
pirically set to 0.5. Note that, while the data term for the above three
methods is a function of number of votes, for SBA, the data term is a
function of distances; hence, the same smoothness term, when used
with these two different classes of data terms, could require differ-
ent scalings. For SBA+MRF method, λ is empirically set to 3. We
did not optimize λ values; however, for obtaining more accurate seg-
mentations, λ value may be further fine-tuned iteratively, based on
the prior knowledge about the output structures (for instance, based
on the prior knowledge about the “number of connected regions” in
the structures of interest). The weights for LWV methods are com-
puted over 9×9×9 neighborhood. For STAPLE, we use its multi-
label version proposed in [5].

3.2. Evaluation

Figure 1 shows the qualitative results obtained from different meth-
ods, for one of the patients’ images, for a fixed number of atlases
(N=12). The following observations can be made from the visual in-
spection: MRF-based methods in general, provided more contiguous
segmentations without any holes and islands. Among the methods
that do not use MRF-based smoothness term, SBA provided rela-
tively more contiguous structures. We can notice the presence of thin
regions for structures IB-Left and IB-Right (shown in red color); we
observe that, compared STAPLE and SBA-based methods, the re-
maining voting-based methods are more successful in retaining such
thin regions. Figure 2 shows segmentation results obtained from
LWV+MRF, for varying number of atlases. Because of the space
limitations, we could not present here qualitative results for varying
number of atlases for the remaining methods. It can be noted from
Figure 2 that for LWV+MRF method, the segmentation results are
quite stable for N ≥ 6.



Ground truth (1)STAPLE (2)SBA (3)SBA+MRF (4)MV (5)MV+MRF (6)GWV (7)GWV+MRF (8)LWV (9)LWV+MRF

Fig. 1: Screenshots of segmentation results obtained from different methods (for N=12). The first two rows respectively show the results in
axial and coronal slices, and the last row shows the resultant lymph node volumes. Each column presents results from different methods.

N=1 N=3 N=4 N=5 N=6

N=7 N=8 N=9 N=10 N=11

Fig. 2: Qualitative results from LWV+MRF method, for varying number of atlases, in one of the axial slices, for one of the patients’ image.

Fig. 3: Mean and standard deviations of Dice Similarity Coefficient (DSC) for different atlas fusion methods, for varying number of atlases.



Table 1: Mean and standard deviations of average number of connected regions per label, obtained from each fusion method (for N=12).

STAPLE SBA SBA MV MV GWV GWV LWV LWV
+MRF +MRF +MRF +MRF

12.36±4.0 1.29±0.3 1.0±0.0 16.89±3.8 1.06±0.1 21.38±3.3 1.01±0.0 24.66±4.5 1.00±0.0

The quantitative evaluation is performed based on (i) Dice Sim-
ilarity Coefficient (DSC), which is a widely used measure of over-
lap between the ground truth and automated segmentations, and (ii)
Number of connected regions per label; since the output segmenta-
tions of each lymph node should ideally contain a single contiguous
region, we are also evaluating the fusion algorithms based on the
number of connected regions they create per each label; we take into
account both islands and holes for computing the number of regions.

Figure 3 presents mean and standard deviations of DSC for
different atlas fusion methods, and for varying number of atlases.
LWV+MRF provided the best DSC results, followed by LWV,
GWV+MRF, GWV, SBA-based methods, and STAPLE respectively.
There is no significant improvement from SBA to SBA+MRF since
lymph node segmentations from SBA itself are already contiguous
(this is evident from the number-of-connected-regions). For N ≥ 6,
The behavior of mean DSC curve for voting-based methods is found
to be more stable compared to STAPLE and SBA-based methods.

We evaluated the statistical significance of improvements in
DSC with the inclusion of MRF-based term for MV, GWV, and
LWV methods, using the Wilcoxon signed-rank test. It is found
(at 0.05 significance level) that in all cases, the improvement in the
segmentation results due to the inclusion of MRF-based smoothness
term are statistically significant compared to their original methods.

Finally, Table 1 summarizes, for each method, the mean and
standard deviations of number of connected regions per label. It
can be noted that, SBA method, even without MRF-based term, pro-
vided contiguous lymph node segmentations. Among the methods
that do not use MRF-based term, from the perspective of contigu-
ous regions, SBA performed the best followed by STAPLE, MV,
GWV and LWV respectively. Inclusion of MRF-based term clearly
resulted in contiguous labels with no holes and islands.

4. CONCLUSIONS

In this paper, we have evaluated various atlas fusion strategies in
the context of lymph nodes segmentation in the head and neck CT
images. We have also reformulated the shape based averaging algo-
rithm to fit into the general MRF-based framework that simultane-
ously performs the tasks of fusion and smoothing. Among all the
methods, local weighted voting combined with MRF-based edge-
preserving smoothing provided the best results, both in terms of
overlap measure and contiguous regions.
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