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ABSTRACT

A patient-specific left atrium (LA) model extracted from
intra-operative C-arm CT plays an important role in surgi-
cal planning for transcatheter left atrial fibrillation ablation.
Overlaying the LA model onto 2D fluoroscopic images pro-
vides valuable visual guidance during surgery. However,
automatic segmentation of the LA, together with the left
atrial appendage (LAA) and the pulmonary vein (PV) trunks,
is challenging due to the large structural variations and non-
optimal image quality. In this paper, we exploit a part based
LA model to handle the structural variations and different
parts are then merged into a consolidated mesh. The con-
nection region between the PV/LAA and the LA chamber
is segmented precisely by enforcing both image boundary
delineation accuracy and mesh smoothness. Furthermore, the
boundary between parts is optimized to improve the mesh
part labeling accuracy.

Index Terms— Left Atrium Segmentation, Fibrillation
Ablation, C-arm CT

1. INTRODUCTION

About 15% of all strokes (which are the third leading cause
of death in the USA) are caused by atrial fibrillation (AF).As
a widely used minimally invasive surgery to treat AF, the
catheter based ablation procedure uses high radio-frequency
energy to eliminate the sources of ectopic foci, especially
around the pulmonary venous (PV) ostia. Automatic segmen-
tation of the left atrium (LA) is important in pre-operative
assessment to identify the potential sources of the abnormal
electrical events [1, 2]. However, there are large variations in
the PV drainage patterns [3] with the most common variations
(about 20-30% of the whole population) as extra right PVs
and the left common PV (where the two left PVs merge into
one before joining the chamber). A personalized LA model
can help to translate a generic ablation strategy to the specific
patient’s anatomy, thus making the ablation strategy more ef-
fective for this patient. It can also be overlaid onto 2D real-
time fluoroscopic images to provide visual guidance during
surgery.

Recently, C-arm computed tomography (CT) is emerged
as a new imaging technique to provide 3D model of the LA.
Compared to conventional CT or magnetic resonance imag-
ing (MRI), the advantage of C-arm CT is that overlay of the
3D patient-specific LA model onto a 2D fluoroscopic image
is straightforward and accurate since both 3D and 2D images
are captured on the same device within a short time inter-
val. Normally, a non-electrocardiography-gated acquisition
is performed to reconstruct a C-arm CT volume, therefore, it
contains severe cardiac motion artifacts. For a C-arm with a
small X-ray detector panel, part of the body may be missing
in some 2D X-ray projections due to the limited field-of-view,
resulting in significant artifacts around the margin of a recon-
structed volume. In addition, there may be severe streak arti-
facts caused by various interventional devices inserted in the
body.

Various methods have been proposed for LA segmen-
tation and they can be roughly categorized as non-model
based or model based approaches. The non-model based ap-
proaches [1, 2] do not assume any prior knowledge of the LA
shape and the whole segmentation procedure is purely data
driven. The advantage of these methods is that they can han-
dle structural variations of the PVs. However, such methods
cannot provide the underlying anatomical information (e.g.,
which part of the segmentation is the left inferior PV). In
practice, non-model based approaches work well on CT and
MRI datasets, but they are not robust on challenging C-arm
CT. The model based approaches exploit a prior shape of
the LA (either in the form of an atlas [4, 5] or a mean shape
mesh [6]) to guide the segmentation. With a prior shape con-
straint, they could avoid the leakage around weak or missing
boundaries, which plagues the non-model based approaches.
However, it is difficult to handle the structural variations, e.g.,
the left common PV, using a holistic shape model [6]. The
PV variations were addressed in [5] using multiple atlases, at
the cost of extra computation time.

Recently, we proposed a fully automatic part based LA
segmentation system on C-arm CT [7]. Instead of using one
mean shape model [6], the challenge of PV structural varia-
tions is addressed using a part based model, where the whole
LA is split into the chamber, appendage, and four major PVs.
Each part is a much simpler anatomical structure compared to



the holistic one, therefore can be detected and segmented us-
ing a model based approach. Though each part is segmented
well, the connection region to the LA chamber (i.e., the region
around the ostia of the PVs and appendage) is difficult to seg-
ment precisely. In atrial fibrillation ablation, tissues around
the PV ostia are the main focus of ablation. Therefore, the
segmentation accuracy around the PV ostia is far more impor-
tant than other non-ablation regions. In this work, we propose
a method for precise segmentation of the ostia region by en-
forcing both image boundary delineation accuracy and mesh
smoothness. A novel approach is also proposed to improve
the labeling of the mesh parts (determining the exact bound-
ary between the appendage/PVs and LA chamber).

2. MULTI-PART LEFT ATRIUM SEGMENTATION

Our part based LA model includes the LA chamber body, ap-
pendage, and four major PVs. The shape of the appendage is
close to a tilted cone and the PVs are tubular structures. For
AF ablation, physicians only care about a proximal PV trunk,
therefore, we only detect a trunk of 20 mm in length, originat-
ing from its ostium. Each LA part is a much simpler anatom-
ical structure compared to the holistic one, therefore can be
detected and segmented using a model based approach. We
use marginal space learning (MSL) [8] to detect and segment
each part. MSL is an efficient method to estimate the position,
orientation, and size of an object in a 3D volume. After auto-
matic object pose estimation, a mean shape is aligned with the
pose as an initial mesh. A machine learning based boundary
detector [8] is used to guide the boundary evolution. For each
LA part, we have an MSL based pose detector and a learning
based boundary detector. Interested readers are referred to [8]
for more details of MSL. After detecting and segmenting all
parts, we merge them into a consolidated mesh, which is the
main topic of this paper.

Compared to the holistic approach [6], the part based ap-
proach can handle large structural variations. The MSL based
detection/segmentation works well for big anatomical struc-
tures, e.g., the LA chamber. However, independent detection
of other parts is not robust, either due to the low contrast (ap-
pendage) or small object size (PVs). In [7], we proposed a
method to enforce statistical shape constraint during the pose
estimation of PVs to improve the detection robustness.

3. PRECISE SEGMENTATION OF OSTIA REGION
OF PULMONARY VEINS AND APPENDAGE

In this section, we present our algorithm for precise segmen-
tation of the ostia region of the PVs and appendage. The
system diagram is shown in Fig. 1. After shape-constrained
detection and segmentation, we get six separate meshes (the
LA chamber, appendage, and four PVs). There may be gaps
and/or intersections among different meshes. Physicians pre-
fer a consolidated mesh with different anatomical structures
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Fig. 1. Diagram of the proposed LA segmentation method.

Fig. 2. Refinement of the segmentation of the ridge between
PV and appendage. Left: An planar cut of a volume overlaid
with the LA part meshes with cyan for the chamber, dark red
for the appendage, and magenta for the left superior PV. Left
Middle: Mask after connecting the PV/appendage meshes to
the LA chamber. The initial ostia region is shown in white.
Right Middle: Mask after erosion. Right: Final mesh.

labeled with different colors. We first project the proximal
ring of a PV or appendage (which is defined as the rim of a
tubular mesh close to the LA chamber) along the tube center-
line onto the LA chamber to eliminate the gaps among dif-
ferent mesh parts. Now, the part meshes are fully connected.
However, the mesh intersections of different parts may still
be present. It is complicated to work directly on the meshes.
Instead, we convert the meshes to a volume mask, and gen-
erate a new mesh from the volume mask using the marching
cubes algorithm [9]. Since pure mesh operation is performed
to connect PV/appendage meshes to the LA chamber, the os-
tia region is not segmented accurately and needs to be further
refined using the approaches detailed in the following.

Mask Refinement: The ridge between the left superior
PV (LSPV) and the appendage is often not delineated accu-
rately, especially when the LSPV and the appendage are close
to each other. As shown in Fig. 2, a narrow ridge is partially
enclosed inside the LA chamber mesh. To refine the segmen-
tation around the ridge, we perform layer-by-layer erosion to
remove dark voxels. We first find the outer layer of the cham-
ber and ostia regions. If a voxel on the outer layer has an in-
tensity less than a threshold, we set it to a background voxel.
Such layer-by-layer erosion is performed 10 iterations. This
erosion operation not only improves the segmentation of the
ridge, but also other regions. For example, as shown in Fig. 2,
the dark voxels around the appendage ostium are removed, re-
sulting in more accurate segmentation around that region too.
A C-arm CT normally has a high intensity variation due to
the lack of a standard protocol for the use of contrast agent.
A fixed erosion threshold does not work for all datasets. In-
stead, we automatically determine an adaptive threshold for



Fig. 3. Segmenting the ostia region of a pulmonary vein.
Left: Separated part meshes. Middle: Fitting a smooth mesh
onto the ostia region. Right: Final mesh.

Fig. 4. Avoid segmentation leakage. Left: Segmentation
after region growing. Right: Segmentation after enforcing
smoothness of the ostia region.

each dataset based on the analysis of the ostia region inten-
sity. To be specific, we sort the intensity of the ostia region
and use the lower 2.5th percentile as the erosion threshold.
Experiments show that this parameter setting results in good
segmentation.

The initial ostia region is labeled with pure mesh opera-
tion by projecting the PV/appendage meshes onto the cham-
ber. The segmentation is often not accurate when the part gap
is too large. After erosion, we perform layer-by-layer region
growing to refine the segmentation using an adaptive thresh-
old. A conservative growing threshold is set (i.e., the 50th

percentile of the initial ostia region intensity) to include only
very bright voxels.

Due to severe noise in C-arm CT, the resulting boundary
after region growing may be quite zig-zag. On very rare cases,
it may leak into other neighboring high-contrasted objects
(e.g., the trans-esophagus echocardiographic (TEE) probe in
Fig. 4). To fix these issues, we fit a smooth mesh in the os-
tia region. The mesh is initialized as a tube. We extend the
proximal ring of a PV (or appendage) towards the chamber.
We then triangulated the surface between the original proxi-
mal ring and the extended ring as an initial mesh. Each mesh
point is moved along the surface normal to the first transi-
tion from a masked voxel to background. Many leaked voxels
are already excluded from the adjusted mesh. However, the
resulting mesh is not smooth and it may still include minor
leakage. Finally, we search for an optimal smooth mesh by
the shrinking the mesh points along the surface normal.

A smooth mesh is fit for each ostia region (in total of

Fig. 5. Mesh part relabeling. Left: Optimal boundary (red
contour) between the left atrial appendage and chamber. Mid-
dle: Before mesh part relabeling. Right: After relabeling.

five) and an ostia region voxel is included in the final mask
if and only if it is inside an ostia mesh. After fitting an opti-
mal smooth mesh around the ostia region, we can achieve a
smooth mesh in the final segmentation and at the same time
prevent leakage (as shown in Fig. 4).

Mesh Part Labeling: Besides precise segmentation of
the ostia region, the mesh parts should also be labeled accu-
rately. Normally, the boundary between different parts has
high surface curvature on the mesh. However, sometimes,
the connection can be smooth, therefore, the exact boundary
around those regions need to be constrained by the neigh-
boring high-curvature regions. We propose an optimization
based approach to search for the part boundary. First the prox-
imal ring of a PV is densely resampled to 0.5 mm. Suppose
the proximal ring center is C. Given a proximal ring point Pi,
a plane is determined that is perpendicular to the proximal
ring plane, and passes Pi and C. Starting from point Pi, we
trace the mask boundary (the boundary between foreground
voxels and the background) on the plane. The tracing stops if
it encounters a masked voxel of another PV (or appendage) or
the total traced length is more than 60 mm. The traced con-
tour is then uniformly resampled to a high resolution (e.g.,
0.25 mm). Left sub-figure of Fig. 5 shows the traced contours
from the appendage proximal ring. This procedure generates
a set of points Qj

i . Here, Qj
i means the jth point on the ith

contour and Q0
i = Pi. We then search for a smooth part

boundary B with the maximum sum of curvature,

B = (Q
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i ) is the curvature at point Qj
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As a second-order derivative of a contour, curvature estima-
tion is error prone, therefore, for some datasets, the final part
boundary B may be a bit away from the chamber. To improve
robustness, we add a small amount of bias, ‖N.(Qj

i − Q0
i )‖

in the cost function to push the part boundary toward the
chamber. Here, N is the normal of the proximal ring and
N.(Qj

i − Q0
i ) is the dot-product of vectors N and Qj

i − Q0
i ,

therefore measuring the distance from Qj
i to the proximal ring

plane. We enforce the smoothness of the part boundary by
constraining the distance of neighboring Q

J(i)
i and Q

J(i+1)
i+1

to ‖J(i) − J(i + 1)‖ ≤ 1. The part boundary should form a
closed contour, therefore ‖J(n − 1) − J(0)‖ ≤ 1. The final



Table 1. Left atrium segmentation errors (based on four-
fold cross validation) on C-arm CT datasets with 253 large
volumes and 434 small volumes. The symmetric surface-to-
surface errors, measured in millimeters (mm), are reported.

Large Volumes Small Volumes
Mean Median Mean Median

LA Chamber 1.61 1.41 1.62 1.44
Appendage 2.87 2.20 2.69 2.21
Left Inf. PV 1.81 1.58 1.96 1.43
Left Sup. PV 1.78 1.44 1.69 1.16
Right Inf. PV 1.80 1.42 1.83 1.52
Right Sup. PV 1.52 1.39 1.62 1.27

optimization problem is formalized as
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J(0)
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Here w is a weight adjusting the bias toward a boundary
close to the chamber. Throughout our experiments, we set
w = 0.001. The optimal part boundary can be solved effi-
ciently using dynamic programming to achieve a global op-
timal solution. Fig. 5 shows the mesh before and after part
relabeling. The appendage mesh is successfully extended to-
ward the chamber in this example.

4. EXPERIMENTS

We collected 687 C-arm CT datasets, scanned by Siemens
Axiom Artis zee C-arm systems at 17 clinical sites from Eu-
rope and the USA. Among them, 253 datasets were scanned
with large X-ray detector panels (30 × 40 cm2) with an
isotropic volume resolution of 0.30 mm3. The other 434
datasets were scanned with small X-ray detectors (20 × 20
cm2) with a volume resolution of 0.18 mm3. Due to the lim-
ited field-of-view of small X-ray detectors, the reconstructed
volumes may contain significant artifacts, especially around
the volume margin. We train two separate systems for the
large and small volumes, respectively.

A four-fold cross validation is performed to evaluate our
algorithm and the segmentation accuracy is measured using
the symmetric surface-to-surface distance. Table 1 shows seg-
mentation errors of the consolidated meshes. For a mesh
part, we measure the distance to the corresponding part in
the ground truth, therefore both the segmentation and mesh
part labeling errors are penalized. The mean errors of the PV
and LA chamber range from 1.61 to 1.96 mm, while the error
of the appendage is significantly larger due to the weak con-
trast inside the appendage. We cannot directly compare our
segmentation accuracy with those reported in the literature
due to the difference in imaging modalities, datasets, and LA
models. There is no quantitative evaluation available in [1, 2].
To the best of our knowledge, there is only one work [6] re-
porting a slightly smaller error, however, their test set of 33
patients is significantly smaller than ours.

The proposed method is computationally efficient, taking

about 2.3 s (on a computer with quad-core 2.33 GHz CPUs)
to process a volume with 256×256×250 voxels. It compares
favorably with the previous methods, e.g., 5 s in [4], 5-45 s
in [1], 30 s in [6], and more than two hours in [5].

5. CONCLUSION

In the work, we presented a part based LA segmentation
method, which can handle structural variations elegantly.
Post-processing is performed to further improve the segmen-
tation accuracy of the LSPV-appendage ridge and the ostia
region of the PVs and appendage. Furthermore, we also
improved the labeling of mesh part boundary on the final
consolidated mesh using an optimization based approach.
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