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Abstract
In this paper, we present a fully automatic method to quantify Tree-in-Bud (TIB) patterns for
respiratory tract infections. The proposed quantification method is based on our previous effort to
detect and track TIB patterns with a computer assisted detection (CAD) system [9]. In addition to
accurately identifying TIB on CT, quantifying TIB is important for measuring the volume of
affected lung as a potantial marker of disease severity. This quantification can be challenging due
to the complex shape of TIB and high intensity variation contributing mixed features. Our
proposed quantification method is based on a local scale concept such that TIB regions detected
via the CAD system are quantified adaptively, and volume percentages of the quantified regions
are compared to visual scoring of participating radiologists. We conducted the experiments with a
data set of 94 chest CTs (laboratory confirmed 39 viral bronchiolitis caused by human
parainfluenza (HPIV), 34 nontuberculous mycobacterial (NTM), and 21 normal control).
Experimental results show that the proposed quantification system is well suited to the CAD
system for detecting TIB patterns. Correlations of observer-CAD agreements are reported as (R2 =
0.824, p < 0.01) and (R2 = 0.801, p < 0.01) for HPIV and NTM cases, respectively.
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1. INTRODUCTION
Abnormal nodular branching opacities in CT scans are termed in the radiology literature as
tree-in-bud (TIB) opacities. Fig. 1(a) and (b) show typical TIB patterns in a chest computed
tomography (CT). These subtle opacity differences represent pulmonary disease in the small
airways, most often due to infectious or non-infectious bron-chiolitis. Previously, we have
developed a CAD system for accurate detection of this complex pattern. As an extension of
our previous work [9], we study another challenging issue of this pattern: quantification.
Indeed, precise quantification and measurement of the TIB abnormality using CAD is
uniquely challenging due to the complex shape characteristics and high intensity variation of
TIB patterns. Regarding these difficulties, we propose an automatic adaptive quantification
method based on a local scale approach in order to bring local information of TIB regions
into quantification framework and compute the volume affected by TIB existence more
accurately.
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The rest of the paper is organized as follows: Section 2 explains the methods of the proposed
quantification system and gives a brief summary of our previously presented CAD system
for detecting TIB patterns. Section 3 presents the feasibility of the proposed quantification
method within the CAD system by evaluating the detection and quantification performances
both qualitatively and quantitatively. We end the paper with conclusion and discussion in
Section 4.

2. METHODS
2.1. Detection of TIB patterns through a CAD system

To fully appreciate how the proposed quantification system is designed, we summarize the
detection component of the CAD system in this section. The detection method is illustrated
in Fig. 2. After lungs were segmented from CT images using clinically accepted and
validated fuzzy connectedness image segmentation algorithm [10], we defined candidate
TIB regions in the segmented lungs based on the local scale (i.e., size) information of the
images. Small scale valued patterns were selected as candidate regions and then for each
local region enclosing candidate patterns, we extracted the texture and shape features. This
process reduces the number of regions from which features were extracted. Similar to the
feature extraction step in most of the CAD studies, the lung regions were divided into equal
size blocks (9 × 9 pixels) and each block was used to extract predefined feature sets. For this
step, we extracted 8 local shape features, including the Willmore energy and local shape
features such as mean curvature, Gaussian curvature, shape index, elongation, shear,
compactness, and distortion [9]. Moreover, we also extracted 18 texture (GLCM) features
[11] from each block and combined these features with local shape features extracted
previously (a total of 26 features for each local region). Extracted features are summarized
in Table 1. Finally, we classified the extracted features through support vector classification
(SVM), which we trained the classifier in training and adapt its parameters, respectively.
The whole data set was randomly divided into training and test sets. Parameters of the SVM
classifiers were learned based on the CT scans pertaining to the training set. SVM regression
was based on pixel-wise classification [7]. For any given image in the test step, the set of
feature vectors were fed into the SVM classifiers to classify different types of tissue patterns
(i.e., TIB and normal).

2.2. Scale based quantification
Among local scale based approaches, the ball-scale (b-scale) method has been shown to be
very useful in explicitly representing objects contained in the images [9, 10]. The main idea
in b-scale encoding is to determine the size of local structures at every voxel as the radius of
the largest ball centered at the voxel within which intensities were homogeneous under a
pre-specified region-homogeneity criterion. We briefly explained below how b-scale scene
is computed:

In the 2D digital space (Z2, ν), a scene = (C, f) is represented by a pair where C is a
rectangular array of voxels, ν = (ν1, ν2) indicates the size of the voxels, and f is a function
that assigns to every voxel an image intensity value. A ball Bk,ν (c) of radius k ≥ 0 centered
at a voxel c ∈ C in is defined by

(1)

The fraction of object is denoted by FOk,ν (c) and indicates the fraction of the ball boundary
occupied by a region which is sufficiently homogeneous with c. FOk,ν(c) was defined as
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(2)

where |Bk,ν (c) − Bk−1,ν(c)| is the number of voxels in Bk,ν (c) − Bk−1,ν (c) and Wψ is a
homogeneity function [10]. In all experiments, we used a zero-mean un-normalized
Gaussian function for Wψ. The size of the local structure was estimated using appearance
information of the grey-level images, i.e., region-homogeneity criterion, b-scale scenes
contain rough geometric information. A detailed description of Wψ and FOk,ν is presented in
[10].

We observed from a sample TIB region shown in Fig. 1(b) and (c) that TIB patterns were
localized only in the vicinity of small homogeneous regions, and their boundaries have high
curvatures due to the nature of its complex shape. These observations (i.e., size and high
intensity variation) provided useful information: in the feature extraction process, we only
extracted features if and only if at least “one” small b-scale pattern exists in the local
regions. That is, we thresholded b-scale scenes specifically so only the smallest b-scale
patterns remained in the scene [9]. Fig. 3 shows smallest b-scale patterns left on the
segmented lungs after thresholding. Each pattern, with its local surrounding region (i.e., 9×9
pixels), is considered a candidate TIB region and features are extracted from these regions
[9].

In return, we used a similar scale based approach for the quantification. For any local region
ℒi (i.e., block), if the region was classified as a region with TIB patterns through SVM, then
we checked the corresponding b-scale region ℬi of ℒi. Next, we identified smallest valued
scales in the scene by thresholding (Fig.4(a)). For each b-scale pattern remained after
thresholding, we labelled 4-neighbours of those patterns as TIB patterns (see Fig.4(b)).
Although the connected component algorithm correctly labels pixels throughout the most of
the region, some pixel may remain mislabelled (Fig.4(c) and (d)). Pixels were determined to
be mislabelled if all surrounding pixels are classified as TIB and the pixel was labelled as
non-TIB, since the probability of this occurrence is usually very low. This determination
procedure was based on the observations on the characteristics of shape and intensity
profiles of TIB patterns described previously in Fig. 1 (b) and (c). Hence, in order to label
those regions correctly, we applied an additional step for identifying mislabelled pixels by
considering the 4-neighbours of each unlabelled pixel, and refine the pixel classification
respectively (Fig.4(e)).

2.3. Visual grading scheme
To analyze existence and dispersion of abnormality, as well as normality of subjects, a
visual grading system was adapted. Each lung was divided into three zones (for a bilateral
total of six) as shown in Fig. 5A. Zone 1 included the apex to the carina. Zone 2 extended
from the tracheal carina to the left atrium’s junction with inferior pulmonary veins. Zone 3
included the remainder of the lungs below the level of the inferior pulmonary veins atrial
junction. A severity score (0 to 5) was assigned to each zone based on the percentage of the
zone occupied as listed in Fig. 5B. Consensus visual scores from participating radiologists
having more than ten years of specialized experience (DMJ and AW) on a scale of 0–5 over
the entire lung volume. These visual scores were recorded and compared with computer
scores (of the proposed CAD system). Following the same visual scoring scheme, another
participating radiologist (OA), who was blinded to the consensus visual scores previously
obtained, was involved in the visual grading process to provide information on inter-
observer variability.
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3. RESULTS
3.1. Data

With Institutional Review Board (IRB) approval, 39 CTs of human parainfluenza virus
(HPIV) infection, 34 CTs of nontuberculous mycobacterial (NTM) infection, and 21 normal
lung CTs were collected for these experiments. These infections were confirmed from
laboratory data at our institution from nasopharyngeal washings (NPW) and/or
bronchioalveolar lavage (BAL). All patients were imaged at our institution using a 64-
detector row Philips Brilliance or a 320-detector row Toshiba Aquilion CT scanner. The
non-contrasted chest CT studies were performed at end-inspiration with 1.0 or 2.0
collimation obtained at 10 or 20 mm intervals from the base of the neck to upper abdomen
with a tube voltage of 120 kV and a current of 200–320 mA depending on the subject’s
weight. Imaging data were constructed to 512×512 matrices with slice thickness of 5 mm.
The in-plane resolution was affected by patients’ size and varied from 0.62 mm to 0.82 mm.
For the HPIV infected subjects and normal subjects, one CT scan was collected per patient,
for a total of 39 and 21 scans respectively (no multiple-scans from subjects). However,
baseline and follow-up scans (two scans) were obtained from the 17 subjects infected with
NTM virus, for a total of 34 CT scans, at different time points in order to measure disease
progression.

3.2. Quantitative and qualitative evaluations
We compared the consensus reading of two expert observers (AW and DJM) to another
expert observer (OA), who was blinded to the consensus scores. We used Pearson product-
moment correlation coefficients to determine inter-observer agreement over each zone, left,
right, and all lung volumes. An overall correlation coefficient of R2 = 0.77 (p < 0.01) for all
subjects indicates a good agreement on the existence of TIB patterns. This agreement may
decrease to R2 = 0.6 (p < 0.01) if a conventional region labelling is used instead of a scale
based quantification method.

A computer score was calculated by averaging the volume occupied by the labelled TIB
regions computed from the scale based quantification algorithm. Calculated computer score
was then normalized to fit the visual grading scheme. Linear regression model was fitted to
all subjects’ scores both from computer and the consensus scores. Scatter-plots of the linear
regression model and the computer-observer agreement correlation are shown in Fig. 6 (left
and middle). Furthermore, in the Bland-Altman plot shown in Fig. 6(right), the difference of
the computer performance and consensus scoring performance was plotted against the
average of the performances. It is clear from these plots that visual and quantitative
assessments correlate well as indicated by the Pearson product-moment correlation of R2 =
0.824 (p < 0.01) and R2 = 0.81 (p < 0.01) for HPIV and NTM subjects, respectively.

4. DISCUSSION AND CONCLUSION
In this study, we propose a local-scale based method for quantifying TIB pattern from CT
scans by integrating quantification algorithms with the CAD system. This study shows high
correlations between CAD and visual grading scores, suggesting that CAD-based
quantification of TIB is a viable technique for assessing infectious disease of the lungs.
Further studies aim to include detection and quantification of other pulmonary patterns on
CT.

REFERENCES
1. Bagci, U.; Bray, M.; Caban, J.; Yao, J.; Mollura, DJ. Computer-Assisted Detection of Infectious

Lung Diseases: A Review. Computerized Medical Imaging and Graphics; 2011. Available Online

Bagci et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Katsuragawa S, et al. Image Feature Analysis and Computer-Aided Diagnosis in Digital
Radiography - Detection and Characterization of Interstitial Lung-Disease in Digital Chest
Radiographs. Medical Physics. 1988; 15(3):311–319. [PubMed: 3405134]

3. Katsuragawa S, et al. Image Feature Analysis and Computer-Aided Diagnosis in Digital
Radiography - Classification of Normal and Abnormal Lungs with Interstitial Disease in Chest
Images. Medical Physics. 1989; 16(1):38–44. [PubMed: 2646516]

4. Chen H, et al. Neural Network Ensemble-Based Computer-Aided Diagnosis for Differentiation of
Lung Nodules on CT Images Clinical Evaluation. Academic Radiology. 2010; 17(5):595–602.
[PubMed: 20167513]

5. Ye XJ, et al. Shape-Based Computer-Aided Detection of Lung Nodules in Thoracic CT Images.
IEEE Transactions on Biomedical Engineering. 2009; 56(7):1810–1820. [PubMed: 19527950]

6. Kauczor HU, et al. Automatic Detection of Quantification of Ground-Glass Opacities on High
Resolution CT using Multiple Neural Networks: Comparison with a Density Mask. American
Journal of Roentgenology. 2000; 175(5):1329–1334. [PubMed: 11044035]

7. Yao J, Dwyer A, Summers R, Mollura DJ. Computer-aided Diagnosis of Pulmonary Infections
Using Texture Analysis and Support Vector Machine Classification. Academic Radiology. 2011;
18(3):306–314. [PubMed: 21295734]

8. Yao J, Han W, Summers R. Computed Aided Evaluation of Pleural Effusion Using Chest CT
Images. Proc. of IEEE ISBI. 2009:241–244.

9. Bagci U, Yao J, Caban J, Suffredini AF, Palmore TN, Mollura DJ. Learning Shape and Texture
Characteristics of CT Tree-in-Bud Opacities for CAD Systems. Proc. of MICCAI. 2011; 14(3):215–
222.

10. Saha PK, Udupa JK, Odhner D. Scale-based fuzzy connected image segmentation: Theory,
algorithms, and validation. Computer Vision Image Understanding. 2000; 77:145–174.

11. Haralick RM, et al. Textural Features for Image Classification. IEEE Transactions on Systems,
Man, and Cybernetics SMC-3. 1973; (6):610–621.

12. Cristianini, N.; Taylor, JS. An introduction to support vector machines. Cambridge, UK:
Cambridge University Press; 2000.

Bagci et al. Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
a. A single axial CT slice with a significant amount of TIB patterns (blue regions). b.
Zoomed (a) with selected rows for intensity analysis. c. Intensity profiles from the selected
rows (from (b)) of a TIB region.
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Fig. 2.
The flowchart of the proposed CAD system.
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Fig. 3.
Candidate TIB voxels are obtained by thresholding b-scale scenes.
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Fig. 4.
(a) smallest b-scale patterns. (b) Connected-components of each pattern is labelled. (c and d)
Possible mislabelled pixels are shown. (e) Refinement of labelled regions.
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Fig. 5.
(A) Lungs are divided into three zones (left). Rough anatomical locations separating zones
are shown in coronal (middle) and axial CT slices (right), respectively. (B) Visual Grading
Scheme.
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Fig. 6.
Visual grading versus computer evaluation for HPIV subjects (left figure) and NTM subjects
(middle figure). Bland-Altman scatter-plot for all HPIV and NTM quantification is drawn
together for analysis of variability between CAD system and consensus reading by
interpreters (right figure).
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Table 1

Features used for detection of the TIB patterns. Assume κ1 and κ2 indicate eigenvalues of the local Hessian
matrix (He) for any given local patch ℒ, K and H indicate Gaussian and mean curvature respectively, dA is the
induced area metrics on Σ, and ds is length metric on ∂Σ.

Extracted features Definition

Willmore Energy ∫Σ |H|2 dA − ∫∂Σ |K|ds

Shape index

Gaussian curvature K = κ1κ2

Mean curvature H = (κ1 + κ2) / 2

Elongation κ2 / κ1 with κ2 ≤ κ1

Distortion |κ1 − κ2|

Shear (κ1 − κ2)2 / 4

Compactness

Grey level autocorrelation, contrast, entropy,

Co-Occurrence variance, dissimilarity, homogeneity,

Matrix (GLCM) based cluster shade, energy, max probability,

texture features sum of averages, difference of variance,

sum of squares of variance, mutual information,

sum of variance,sum of entropy

difference of entropy, normalized inverse,

cluster prominence, difference moment.
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