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Abstract

The disruption of normal function and connectivity of neural circuits is common across many 

diseases and disorders of the brain. This disruptive effect can be studied and analyzed using the 

brain’s complex functional and structural connectivity network. Complex network measures from 

the field of graph theory have been used for this purpose in the literature. In this paper we have 

introduced a new approach for analyzing the brain connectivity network. In our approach the true 

connectivity network and each subject’s bias and variance are estimated using a population of 

patients and healthy controls. These parameters can then be used to compare two groups of brain 

networks. We have used this approach for the comparison of the resting state functional MRI 

network of pediatric Tuberous Sclerosis Complex (TSC) patients and healthy subjects. We have 

shown that a significant difference between the two groups can be found. For validation, we have 

compared our findings with three well known complex network measures.
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1. INTRODUCTION

The human brain can be considered as a complex functional and structural network [1]. 

Graph theory has been widely utilized for the analysis and characterization of the brain 

connectivity network. To this end, connectivity measures between different parts of the 

brain are calculated and used to create a functional or structural connectivity matrix [2]. 

Recently, group analysis has been utilized in several studies to analyze the effect of diseases 

on the brain network [3]. For this purpose, a series of complex network measures has been 

used to analyze the functional and structural connectivity networks of the brain. Using these 

measures, the effect of different diseases on integration, segregation, centrality, and 

resilience of each node and also the whole brain network has been studied [4]. In this paper, 

we introduce a new approach to analyze brain networks by using the Expectation-

Maximization (EM) algorithm to estimate the true brain network, and bias and variance 

parameters. The estimated bias and variance parameters are used for the group analysis to 

compare the group of controls and patients. We have used our new measure to compare the 

functional network of a group of pediatric Tuberous Sclerosis Complex (TSC) patients with 

HHS Public Access
Author manuscript
Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2015 
November 02.

Published in final edited form as:
Proc IEEE Int Symp Biomed Imaging. 2012 May ; 2012: 1511–1514. doi:10.1109/ISBI.2012.6235859.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



age matched healthy subjects. TSC is a neurologic disorder and patients present with severe 

epilepsy, cognitive impairment and neurobehavioral abnormalities, particularly autism [5]. 

In several studies abnormalities in the white matter of TSC patients including dys-

myelination in the white matter tracts have been reported [6]. However, there is limited 

knowledge on functional and structural connectivity in pediatric TSC patients.

2. MATERIAL AND METHODS

Assume that the connectivity matrix Wj is generated for each one of the patients and healthy 

subjects in a population with J members. For each network j, wmnj indicates the weight of 

the link that connects the regions m and n. We assume that there are L nodes (regions) in 

each one of the networks. In the literature, complex networks measures have been used to 

analyze the differences of the networks between patients and controls. For this purpose, 

using each one of the measures, global or local organization of the networks are 

characterized and then populations of patients and healthy subjects are compared.

2.1. True Brain Network

All of the above mentioned measures use graph features to compare different networks. 

However, in our approach, we consider each one of the connectivity matrices as a variation 

of the true brain network. Following the approach in [7, 8], we model the variation in the 

following form:

(1)

In this equation τ is the true brain network and τmn is the weight of the link between the 

nodes m and n in the true brain network. Also, β is the vector of bias of different networks in 

the population where βj shows the bias of the j-th network, and εmnj denotes the error in the 

weight of the link between nodes m and n. It is assumed that the error has an uncorrelated 

normal distribution . Thus, we characterize the j-th brain network in our 

population with a bias βj from the true brain network and a variance  which models the 

errors. We assume that the joint distribution of the weights given the default network and 

each network’s parameters have the following form:

(2)

where φ{․} is the pdf with normal distribution N(0, 1). We assume that brain networks of 

different subjects in the population are independent. In addition, we also assume that the link 

weights in the network are independent. Because of the symmetrical form of the network, 

the elements of the matrix are not independent, and therefore we need to use the lower 

triangular or upper triangular part of the network matrices. The true network is not known 

and maximization of the complete data likelihood can not be used to estimate the bias and 

variance of each one of the networks in the population. Thus, the EM algorithm is used to 

estimate the true brain network, bias, and variance. It should be mentioned that there is no 

assumption about the weight values. For example, one of the problems of resting state fMRI 
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(rsfMRI) analysis are the negative correlations, and many complex network measures work 

on either positive or negative weights. Thus, in many methods either the negative values are 

eliminated or two different networks are considered for negative and positive connections 

[9].

Our aim is to find the bias and variance of each one of the networks. Using the EM 

algorithm at each iteration t, the expectation steps σ and τ are computed using the following 

two equations:

(3)

Then, in the maximization step using the results given in Eq. 3, the estimation of βj for each 

one the networks is updated using the following equation:

(4)

Moreover, the estimation of σj for each one the networks is updated using the following 

equation:

(5)

Using this framework, the parameters are updated iteratively until convergence is obtained 

which is guaranteed by using the EM algorithm. Last but not least, we initialize the bias and 

variance parameters to zero and one, respectively.

2.2. Distance Calculation

After the calculation of the bias and variance of each network, these parameters will be used 

for the analysis of the networks. In this work, we focus on the application of the framework 

for group analysis. Without loss of generality it can be assumed that the networks of subjects 

j ∈ {1, …, J1} and j ∈ {J1 + 1, …, J}, indicate healthy subjects and patient, respectively. It 

is possible to compare bias and variance of two groups independently, however, we are 

more interested in using both bias and variance parameters in the comparison of the groups. 

To this end, for the controls (C) and patients (P), the average bias is computed using the 

following equations:
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(6)

where β̄C and β̄P denote the average bias of controls and patients, respectively. Moreover, 

using the following equations, the average variance of controls , and the average variance 

of patients , can be computed:

(7)

Now it is possible to directly compare the Gaussian probability distribution of the controls 

and patients using any probability distance measure. In this paper we use the symmetrized 

Kullback-Leibler divergence (SKLD) for the comparison of the two groups which can be 

defined as in [10]:

(8)

where KLD(N1‖N2), the Kullback-Leibler divergence (KLD) of Gaussian probability 

distribution of group one and two is:

(9)

2.3. Complex Network Measures

There are different types of complex network measures that can be used for the analysis of 

the brain network. In this paper, we compared our findings with 3 well known measures that 

are usually considered for this purpose. The considered measures are: Total connection 

strength (K), overall weighted clustering coefficient (C), and overall weighted transitivity 

(T) [4]. For each subject, Kj, Cj, and Tj can be computed using the following set of 

equations:
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(10)

Similar to our approach, for each one of these complex network measures, and also for the 

group of patients and controls, the average can be computed and their difference can be used 

for the analysis of the group differences. We define these differences as KD, CD and TD.

2.4. Statistics

After finding a difference between the two groups using any measure, this difference should 

be examined using a statistical test. In this paper we have used the permutation test for the 

analysis of the group differences. First, the distance between the two groups is computed 

using each one of the measures. Then, subjects are randomly divided into two groups with J1 

and J − J1 subjects and the difference between the two groups is computed for each one of 

the measures. The procedure is repeated R times to find  and  for each r ∈ {1, 

…, R}. Finally, we calculate the p-value of measure X using 

where H is the step function. In this equation the number of times that the difference of the 

measures between two randomly generated groups is larger than the difference between the 

controls and the TSC patients is used to estimate the p-value.

2.5. Data Acquisition and Pre-processing

Structural MRI and rsfMRI were carried out in 22 subjects with TSC (age range 3–24 years, 

mean age 11.4), and in 18 age-matched controls on a 3T Siemens scanner. For rsfMRI, 

sequences with TR ranging from 2400ms to 3000ms were used. T1-weighted MPRAGE 

images of each subject were automatically segmented by label fusion into 128 cortical/sub-

cortical structures using the IBSR datasets [11] as a template. The fusion algorithm is an 

extension of the STAPLE algorithm [12]. Figure 1(a) shows the parcellation and 

segmentation of an axial slice through the brain based on 114 cortical and sub-cortical grey 

matter structures. A series of pre-processing steps were applied to the rsfMRI data of each 

subject. Head motion was corrected by rigid registration of each volume to the average of all 

volumes, and each motion corrected volume was spatially smoothed using a 8-mm full-

width half-maximum (FWHM) Gaussian kernel. T1-weighted images and their 

segmentation were registered to the average of the head motion corrected rsfMRI images. 

Using a regression model, linear and quadratic trends, the averaged signal over the whole 

brain, the averaged signal over the ventricles, and the averaged signal over the deep white 

matter were removed [3]. Finally, the time series were band pass filtered by retaining 

frequencies between 0.01–0.08Hz.

3. RESULTS

For each one of the cortical/sub-cortical grey matter structures the average pre-processed 

time signal was utilized to construct a weighted connectivity graph for each subject, based 

on Pearson’s correlation. In this paper we focus on positive connectivity to be able to 

compare our findings with the results of other complex network measures. We have used our 
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approach to estimate the true connectivity matrix of the brain network which is shown in 

Figure 1(b). In addition, Figures 1(c) and 1(d) show a sample connectivity matrix of a TSC 

patient and a healthy subject. It can be seen that the connectivity matrix of the healthy 

subject and the estimated true connectivity matrix are similar. We applied a group difference 

analysis using the permutation test for our introduced method and also for each one of the 

complex network measures. For the permutation test and for each one of the measures, we 

have used 10,000 random permutations and a significance threshold of 0.05. Statistical 

analysis using the permutation test shows a significant difference between patients and 

healthy subjects using our approach (pS < 0.05). In addition, the permutation test shows a 

significant difference between TSC patients and controls for the total connection strength 

and overall weighted clustering coefficients, (pC, pK < 0.05). However, the difference 

between the two groups is not significant based on the overall weighted transitivity (pT > 

0.08). These findings show that our approach can be used for connectivity network analysis.

4. CONCLUSIONS

We have introduced a measure for the comparison of the connectivity matrices of a group of 

patients and healthy subjects. In our approach we estimated the true brain network, bias, and 

variance of each one of the subjects which can be used for group analysis. We performed 

resting state functional connectivity group analysis of pediatric TSC patients and controls. 

The statistical analysis using a permutation test shows a significant difference between the 

networks (p < 0.05). In addition, we have used three well established complex network 

measures for the analysis of the same subjects. Two of the complex network measures show 

a significant difference between functional connectivity in TSC patients compared to 

controls (p < 0.05). It should be pointed out that we have used our method for the global 

network analysis, however, it is also possible to use our method to find the local differences 

between the patient population and healthy subjects. The differences in connectivity that we 

found could help explain the neurological phenotype in patients with TSC, as decreased 

long-range connectivity is thought to be associated with autism spectrum disorders.
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Fig. 1. 
Brain parcellation and connectivity matrices. (a). Parcellation and segmentation of an axial 

slice based on 114 cortical and sub-cortical grey matter structures. (b). Estimated true brain 

network. (c). Network of a patient with TSC. (d). Network of a healthy subject.
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