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ABSTRACT

Ultrasound image resolution enhancement is an ongoing chal-

lenge to date. Though many works have been performed us-

ing device-based approach, there exists few works dealing

with post-processing methods. This paper investigates a tech-

nique based on the Alternating Direction Method of Multi-

pliers for the resolution enhancement in ultrasound imaging,

which includes the deblurring and denoising tasks. We here

point out the characteristics of the proposed technique and

thereby underline the features that must be dealt with for suc-

cessful ultrasound image restoration. Synthetic and in vivo

ultrasound images are processed in order to asses its perfor-

mances.

Index Terms— Resolution Enhancement, Ultrasound,

Medical Imaging, Convex Optimization, Point Spread Func-

tion (PSF), Alternating Direction Method of Multipliers

(ADMM).

1. INTRODUCTION

Ultrasound imaging (USI) is a harmless, cost-effective, non-

invasive modality commonly used in the detection of various

cancers, in the assessment of blood flow velocity or for in-

vestigating biological tissues. Compared with other imaging

modalities such as, e.g., X-ray computed tomography, USI

only involves an ultrasonic wave and is thus a comparatively

safer imaging technique for both the patient and the clini-

cian. It has now become a standard procedure for medical

diagnosis such as breast cancer early detection [1, 2]. Unfor-

tunately, due to instrumentation underlying constraints and

non-coherent backscattered signals, ultrasound (US) images

are contaminated by an intrinsic noise called ”speckle” which

deeply reduce the general image quality and can lead to inac-

curate diagnoses by practitioners.

Compared with other imaging modalities, the main draw-

back of USI is its poor resolution due to the acoustical char-

acteristics and the geometry of ultrasound transducers. US

image resolution improvement is often achieved by optimiz-

ing the imaging device, e.g. [3, 4]. An alternative to enhance
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US image resolution is to investigate post-processing super-

resolution (SR) techniques. Few works have investigated

post-processing techniques and especially the point spread

function estimation (PSF) which is still an ongoing challenge

today.

Most of recent works are based on deconvolution tech-

niques. Simplest deconvolution methods such as the Wiener

and Tikhonov linear filters are quite noise-sensitive and can

not take into account the whole characteristics of the PSF.

Other works have proposed an extension to the parametric

approach [5] and complex deconvolution [6]. Here, we fo-

cus on SR in USI and we use the classical image formation

model and the inverse problem with a L2 based regulariza-

tion term, providing smooth solutions. This can be achieved

using the L1 total variation (TV) criterion [7] for denoising

purposes, thanks to its ability to preserve edges in the im-

age. Recent literature reports efficient methods for general

image restoration with the TV criterion based on the Alternat-

ing Direction Method of Multipliers (ADMM) [8] approach,

which is a variant of the classical Augmented Lagrangian

method implementable for optimization problems with sepa-

rable structures and linear constraints. In this paper, we chose

to promote piecewise regular solutions of B-mode ultrasound

images within the ADMM framework.

2. SUPER-RESOLUTION PROBLEM

FORMULATION IN ULTRASOUND IMAGING

2.1. Image Formation Model

Under the assumption of weak scattering conditions, the clas-

sical interaction between the acoustic field and studied tis-

sues is linear [1] and the ultrasound image formation model

is given by the following convolution formulation:

y(t) = g(t)⊗ x(t) + n(t), (1)

where y(t) is the acquired radio frequency (RF) signal, g(t)
denotes the PSF, x(t) is the tissue scattering function, n(t)
stands for the noise and ⊗ represents the convolution opera-

tor. It is assumed that the noise has finite energy with a known



upper bound Σ.

In this paper, instead of working with real-valued RF sig-

nals, we rather work with complex in phase/quadrature (IQ)

signals. The IQ signal is an analytic signal obtained via the

demodulation of the RF signal in the noise-free case:

zIQ(t) = y(t) + jH{y(t)}

= g(t)⊗ x(t) + jg(t)⊗ x(t)⊗ 1

πt
= g(t)⊗ x̄(t), (2)

with j =
√
−1 the imaginary unit, H{·} the Hilbert trans-

form and x̄(t) a complex signal to be recovered. Due to the

basic principle of USI, the PSF modulated function can be

written as g(t) = h(t) cos(ω0t + φ) with h(t) the envelope

of PSF, ω0 a local central frequency and φ a phase term, the

envelope signal e(t) can be written as

e(t) = |zIQ(t)| = |h(t)⊗ x̄(t)|, (3)

and thanks to the bounded noise assumption, we have

||e(t)− |h(t)⊗ x̄(t)| ||22 ≤ Σ. (4)

Here, we introduce in the constrained condition both the

phase term in order to remove the absolute operator and

the downsampling operator S which accounts for the low

resolution nature of zIQ(t):

||zIQ(t)− S (h(t)⊗ x̄(t)) ||22 ≤ Σ. (5)

From (5), we need additional information about x̄(t) to per-

form its estimation. Some works used the sparsity hypothe-

sis of USI [9] but most of these images are not sparse in the

spatial domain. Instead, we investigate here the TV approxi-

mation of USI. In this case, the estimation problem within the

super-resolution framework becomes

min
x̄∈Cn

|||∇x̄|||1
s.t. ||zIQ − S (h⊗ x̄) ||22 ≤ α

(6)

or in its equivalent unconstrained form:

min
x̄∈Cn

|||∇x̄|||1 + τ ||zIQ − S (H ⊗ x̄) ||22, (7)

The temporal notation is removed for simplicity. S is a simple

structure matrix depicting a s factor downsampling in vertical

and horizontal directions, ∇ = (∇v,∇h)
T : Cn → C

n × C
n

is a discrete version of the vertical and horizontal gradients, τ

and α are positive real numbers measuring the trade-off be-

tween the fit to zIQ and the amount of TV regularization.

Note that since we choose circular boundary conditions, H ,

∇v and ∇h are block-circulant matrices and can hence be di-

agonalized by Fourier Transform. Note that ∇x ∈ C
n × C

n

means that ∇x is a matrix with 2 rows and n columns. || · ||2
refers to the standard definition of an L2-norm, while ||| · |||1
refers to another L1-norm.

The super-resolution task is hence formulated as a con-

strained optimization problem expressed in (6).

2.2. General Alternating Direction Method of Multipliers

Framework

Many numerical algorithms are able to solve equation (6), and

the conjugate gradient methods would be the most simple and

popular amongst them. Unlike the ADMM framework, such

schemes are known to be slow to converge, especially when

the functional is not quadratic, non-smooth or when its gradi-

ent is not Lipchitz1 differentiable [8].

Let us consider the following real case general optimiza-

tion problem:

min f1(x) + f2(y)
s.t. x ∈ X , y ∈ Y, Ax+By = c

(8)

where A ∈ Ml,n(R) and B ∈ Ml,m(R) are l× n and l×m

given matrices, respectively; c ∈ R
l is a given vector, X ⊆

R
n and Y ⊆ R

m are given convex sets, f1 : X → R
n and

f2 : Y → R
m are closed convex functions.

The Augmented Lagrangian (AL) function of (8) writes

L(x, y, λ) = f1(x) + f2(y)+

〈λ,Ax+By − c〉+ β
2 ||Ax+By − c||22,

(9)

where λ ∈ R
l is the Lagrangian multiplier attached to the

linear constraints, β ∈ R
+∗ is the penalty parameter for the

violation of theses constraints and 〈·, ·〉 denotes the usual in-

ner product.

Given an initial λ0, the AL method approaches the so-

lution of the original problem (8) by iteratively solving the

following auxiliary problem :

{

(xk+1, yk+1) = argmin
x∈X ,y∈Y

L(x, y, λk)

λk+1 = λk + β(Axk+1 +Byk+1 − c)
(10)

However, despite its popularity for solving generic optimiza-

tion problems with such constraints, it would not be judicious

to implement directly the original AL method (10) to solve

our specific problem (8). The separable structure emerg-

ing in both the objective function and the constraint would

completely be omitted, thus requiring the simultaneous min-

imization of xk+1 and yk+1 in (10). Hopefully, thanks to the

ADMM framework, we rather iteratively solve the following

three stage problem:















xk+1 = argmin
x∈X

L(x, yk, λk)

yk+1 = argmin
y∈Y

L(xk+1, y, λk)

λk+1 = λk + β(Axk+1 +Byk+1 − c)

(11)

ADM hence inherits the algorithmic framework of the AL

method but with the improvement of minimizing xk+1

1A function f : X 7→ Y is K-Lipschitz continuous if there exist a real

constant K ≥ 0 such that ∀x1, x2 ∈ X, |f(x1)− f(x2)| ≤ K|x1 − x2|.



and yk+1 serially via solving two lower-dimensional sub-

problems. Our problem can eventually be reformulated as

follows:

min |||ω|||1
s.t. x̄ ∈ C

n, ω ∈ C
n × C

n, ω = ∇x̄, z ∈ Z (12)

where Z =
{

z ∈ C
n, z = h⊗ x̄, ||e− S (z) ||22 ≤ α

}

.

This problem fits the framework (8) by choosing y =
(ω, z)

T
, f1(x) = 0, f2(y) = |||ω|||1+χZ(z), A = (∇, H)

T
,

B = (−ICn×Cn , −ICn)
T

and c = 0. ICn denotes the C
n

identity matrix and χZ the indicator function of Z .

2.3. Detailed Implementation

According to the previous framework, the AL (9) can be

rewritten as:

L(x, y, λ) = f2(y)+〈λ,Ax+By〉+ β

2
||Ax+By||22, (13)

Note that l = 3n and λ = (λ1, λ2, λ3)
T ∈ C

n ×C
n ×C

n, as

well as y. The three step ADMM algorithm comes after some

algebraic development:

• Step 1:

xk+1 = argmin
x∈Cn

L(x, yk, λk)

= argmin
x∈Cn

〈λk, Ax+Byk〉+ β
2 ||Ax+Byk||22

xk+1 is the solution of a linear system and can be easily

retrieved in the spectral domain, where operations are done

pointwise using Fast Fourier Transform (FFT) and Inverse

Fast Fourier Transform (IFFT), written F {·} and F−1 {·}:

xk+1=F−1











F

{

β

[

∇
T

(

(y1,k,y2,k)−
(λ1,k,λ2,k)

β

)

+HT
(

y3,k−
λ3,k

β

)

]}

F{∇T ∇+HT H}











• Step 2:

yk+1 = argmin
y∈Cn×Cn×Cn

L(xk+1, y, λk)

= argmin
y∈Cn×Cn×Cn

f2(y) +
β
2

∥

∥

∥
y −

(

Axk+1 +
λk

β

)
∥

∥

∥

2

2

which can be split into yk+1 = (ωk+1, zk+1)
T and solved as:







ωk+1 = soft 1
β

(

∇xk+1 +
(λ1,k,λ2,k)

β

)

S (zk+1) =
S
(

Hxk+1+
λ3,k

β

)

+2γx0

1+2γ

where γ = 1
2 + 1

2

√

C
α

, with C a positive constant solution of

a quadratic equation not explicitly reproduced here for sim-

plicity and α the trade-off constant defined in (6). softδ (·) is

the (complex) soft-thresholding operator defined for complex

argument by

softδ (ω) = ω
max (|ω| − δ, 0)

max (|ω| − δ, 0) + δ
. (14)

• Step 3:

λk+1 = λk + β(Axk+1 +Byk+1).

3. EXPERIMENTS, RESULTS AND DISCUSSION

3.1. Point Spread Function

Estimation of USI PSF is a crucial step in the restoration

process and inaccuracies during this stage may cause a se-

vere decrease in the algorithm general performances. Besides,

the PSF g(t) can be effectively estimated from the RF signal

based on the minimum phase assumption [10]. For the sake

of simplicity, we will here consider a space-invariant PSF.

3.2. Synthetic Images

Synthetic images were generated using FIELD II [11] in order

to determine both the axial and lateral resolutions. Note that

equation (6) becomes much simpler when the input signal x̄

is an impulsion.

The PSF was first considered space-invariant and approx-

imated by the inpulse response of a point source within the

focal zone. Fig. 1 shows (a) the original image and (b) the de-

graded image, blurred using the previously described kernel,

downsampled with s = 2 and with a slight 20 dB SNR noise

added. (c) and (d) are the results of the L1 criterion [9] based

algorithm and the proposed TV criterion based ADMM, re-

spectively. In this simple case, it is better to use the sparsity

hypothesis

3.3. In Vivo Ultrasound Images

Ultrasound image of a mouse kidney acquired with a 25 MHz

transducer was processed. As shown by the results presented

in Fig. 2, the restoration effect yields a significant qualitative

improvement in both the signal-to-noise ratio and the con-

trast of the biological sample. (a) and (b) are two input im-

ages of the mouse kidney, (c) and (d) are the corresponding

results performed with the Chambolle algorithm, (e) and (f)

are the corresponding TV-ADMM results performed with our

method.

From these figures it can be noticed that the sparsity hy-

pothesis can not stand for such US images. To our knowledge,

there is not any simple SR method for USI: this is why the

comparison is performed with the USI deconvolution frame-

work in [12] which is reported to be one of the most popular

technique.

4. CONCLUSION

This paper has proposed an ADMM based technique for the

restoration of US images and the resolution improvement is

observable on synthetic and in vivo US images. Further works



will deal with improved space-variant PSF estimation and ac-

counting for the speckle statistic of US images together with

quantitative evaluation and deeper comparisons.

(a) Original image (b) Contaminated image

(c) L1 result (d) TV-ADMM result

Fig. 1. Resolution of two close point sources with parameters

α = 0.1, β = 0.8. s was set to 2. The convolution kernel

is simulated using FIELD II and a 3 MHz center frequency

linear transducer. (a) and (b) are the original and contami-

nated images respectively, (c) and (d) are the L1-ADMM and

TV-ADMM result image
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