
BLIND COMPRESSED SENSING WITH SPARSE DICTIONARIES
FOR ACCELERATED DYNAMIC MRI

Sajan Goud Lingala* and Mathews Jacob†

*Department of Biomedical Engineering, The University of Iowa, IA, USA
†Department of Electrical and Computer Engineering, The University of Iowa, IA, USA

Abstract
Several algorithms that model the voxel time series as a sparse linear combination of basis
functions in a fixed dictionary were introduced to recover dynamic MRI data from under sampled
Fourier measurements. We have recently demonstrated that the joint estimation of dictionary basis
and the sparse coefficients from the k-space data results in improved reconstructions. In this paper,
we investigate the use of additional priors on the learned basis functions. Specifically, we assume
the basis functions to be sparse in pre-specified transform or operator domains. Our experiments
show that this constraint enables the suppression of noisy basis functions, thus further improving
the quality of the reconstructions. We demonstrate the usefulness of the proposed method through
various reconstruction examples.

1. INTRODUCTION
Dynamic MRI is a key component of many clinical exams such as cardiac, perfusion, and
functional imaging. The slow nature of the MR image acquisition scheme and the risk of
peripheral nerve stimulation often restricts the achievable spatio-temporal resolution and
volume coverage in dynamic MRI. Several acceleration schemes that recover dynamic
images from undersampled k − t measurements have been proposed to overcome these
problems. They include the classical x − f space packing methods (eg:[1]), low rank models
(eg:[2, 3]), compressed sensing (CS) schemes (eg:[4, 5]), combined low rank and CS
schemes [3, 6], and more recently blind compressed sensing with learned dictionaries [7].

In this paper, we further develop our previous work on blind compressed sensing (BCS)
based dynamic MRI [7]. The BCS framework model the Casorati matrix of the spatio-
temporal signal as the product of a sparse coefficient matrix and a dictionary of temporal
basis functions; the sparse coefficients and the dictionary basis functions are jointly
estimated from under sampled k-space data. The Frobenius norm of the dictionary is upper
bounded by a constant to avoid scale ambiguity issues. The proposed scheme provided
improved reconstructions of myo-cardial perfusion MRI data, compared to existing methods
such as low rank and CS methods [7]. To further validate BCS, we compare it with k-t
FOCUSS in the context of highly accelerated cine MRI. Note that the Fourier dictionary
used in k-t FOCUSS is more or less optimal due to the periodic cardiac motion. We observe
that the some of the basis functions learned by the BCS scheme suffered from noise or alias
patterns at such high accelerations, resulting in in speckle-like residual alias artifacts in the
reconstructed data (see Fig. 3). This example motivates us to go beyond the framework of
blind dictionary learning, with the objective of learning dictionaries with more accurate
basis functions.
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The main focus of this paper is to improve the BCS algorithm by further constraining the
dictionary basis functions. Specifically, we model the Casorati matrix as the product of two
matrices U and V, which are sparse in two transform/operator (denoted by 1 and 2,
respectively) domains. The main difference of this scheme with the BCS setting is the
sparsity penalty on the temporal basis functions. Hence, we term the new model as sparse
BCS. The new constraint enables us to inject prior information (eg. smoothness of the basis
functions) into the reconstruction algorithm by appropriately choosing 2. We pose the
joint recovery of U and V as an optimization problem, where the cost function is a linear
combination of data consistency and sparsity penalties on U and V. We use a majorize
minimize alternating minimization strategy to solve the optimization problem. The
optimization problem is non-convex; it is convex with respect to one variable, if the other is
assumed to be fixed. To minimize the risk of convergence to local minima, we use a
continuation strategy. Specifically, the initial cost function yields the low-rank solution [8]1,
while the continuation parameters are incremented to make the cost function approximate
the desired one. We observe that this scheme is capable of overcoming local minima issues.

We demonstrate the utility of this scheme in free breathing perfusion MRI, free breathing
cardiac MRI, and cardiac cine MRI (see figs. 1,2,3). Specifically, the use of relevant
penalties on the dictionary provides improved basis functions, which translates to better
reconstructions. Thus, this algorithm can be customized to different applications by
appropriately choosing the sparsity transforms or operators ( 1, 2). More importantly, we
observe that choosing 2 as the temporal derivative operator yields comparable or even
better reconstructions in the cardiac cine example, when compared with sparse recovery
using the almost optimal Fourier dictionary (the k-t FOCUSS scheme).

2. BLIND CS WITH SPARSE DICTIONARIES
2.1. Dynamic image acquisition

The main goal is to recover the dynamic dataset γ(x, t) : ℤ3 → ℂ from its under-sampled
Fourier measurements. We represent the dataset as the M × N Casorati matrix [2]:

(1)

Here, M is the number of voxels in the image and N is the number of image frames in the
dataset. The columns of Γ correspond to the voxels of each time frame. We model the
measurement process as:

(2)

where, bi and ni are respectively the measurement and noise vectors at the ith time instants.

i is the Fourier sampling operator that evaluates the two dimensional Fourier transform of
the ith column of Γ on a specified sampling trajectory.

2.2. Image reconstruction
We model Γ as the product of a spatial coefficient matrix UM×R and a dictionary matrix
VR×N, which contains the temporal basis functions:

1If 1 and 2 are energy preserving operators (eg. orthogonal transforms, tight frames).
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(3)

Here, R is the number of basis functions in the dictionary. We impose sparsity constraints on
U and V in transform basis 1, 2 and simultaneously estimate them by solving:

(4)

The first term ensures data consistency. The operators 1, 2 can be chosen appropriately
based on the specific DMRI application. In this paper we considered the cases of (i) 1 = ℐ,

2 = ℐ, and (ii) 1 = ℐ, 2 = ∇t (temporal derivative operator) respectively for regimes
with large interframe motion (eg: free breathing MRI), and smooth temporal patterns (eg:
cardiac cine). The main difference with the BCS setting is the sparsity constraint on V
instead of the Frobenius norm constraint on V. The motivation of imposing this additional
sparsity constraint on the dictionary is demonstrated on a free breathing cardiac perfusion
dataset in figure 1. The sparsity constraint effectively penalizes the basis functions that
capture noisy oscillations, which are present in the BCS setting. This translates to improved
reconstructions where the noise like features (see arrows in Fig. 1 d) are reduced without
compromising on the temporal fidelity.

2.3. Optimization algorithm
The problem in (4) contains the non-dfferentiable l1 norms. To solve it, we first approximate
the l1 semi-norms by differentiable Huber induced penalties as:

(5)

where,  and  are the
Huber-induced penalties; (pi,j, qi,j are the entries of 1U and 2V respectively). The Huber
function is specified as:

(6)

When β1, β2 → ∞, the Huber penalty approximates the l1 semi norm, and hence the problem
in (5) approximates the original problem in (4). However in practice, we observe that the
algorithm is vulnerable to local minima if we solve for (5) with β1, β2 → ∞. This is
expected since (4) is not a convex optimization scheme. Hence, we use a continuation
strategy to minimize the risk of local minima. We initially solve (5) for low values of β1, β2,
during which (5) is a much simpler problem (quadratic in U, V), and progressively increase
the complexity by incrementing β1, β2.

We rely on the majorize minimize framework to realize an efficient optimization algorithm.
We start by majorizing the Huber induced penalties in (5):

(7)
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(8)

where L, R are auxiliary variables. Substituting (7), (8) in (5), we obtain the following
modified cost function, which has to be minimized with respect to four variables U, V, L
and R:

(9)

While this formulation may appear more complex than the original problem in (4), this
results in a simple algorithm. Specifically, we use an alternating minimization scheme to
solve (9). At each step, we solve for a specific variable, assuming the other variables to be
fixed; we systematically cycle through these subproblems until convergence.

The subproblems for L and R respectively involves shrinkage of 1U and 2V. They can
be solved analytically as:

(10)

(11)

where ‘+’ represents the shrinkage operator defined as (τ)+ = max{0, τ}. The subproblems
for U and V are quadratic. We solve them by using conjugate gradient (CG) algorithms.
Starting with random matrix initializations of U and V, the algorithm iterates between the L,
R, U, V subproblems in an inner loop, while progressively updating β1, β2 starting with
small values in an outer loop. The inner loop is terminated when the cost in (4) stagnates.
The outer loop is terminated when a large enough β1, β2 are achieved.

3. RESULTS
We evaluate the proposed scheme by performing retrospective undersampling experiments
on fully sampled datasets. Specifically, we show one example with significant inter-frame
motion content (free breathing MRI: Nx × Ny × Nt = 128 × 128 × 60: fig 2), and one with
smooth temporal intensity variation (breath held cardiac cine MRI: Nx × Ny × Nt = 156 ×
192 × 25: fig 3). A radial trajectory with 30 radial rays with golden ratio angle spacing
between successive rays was used for undersampling. We perform comparisons with k-t
FOCUSS [4], temporal total variation (TV) constrained reconstruction [5], and blind CS [7].
We considered 30 basis functions in the blind CS and the sparse blind CS models. The
sparse blind CS model was implemented with 1 = ℐ, 2 = ℐ in Fig. 2, and with 1 = ℐ,

2 = ∇t in Fig. 3. The values of the regularization parameters in all the methods were
chosen such that the signal to error ratio between the reconstruction and the reference fully

sampled data was maximized .

In Fig. 2, we observe the kt FOCUSS and the TV methods are suboptimal due to the large
motion content. Specifically, they exhibit poor temporal fidelity due to motion blur and
temporal smoothing. The BCS scheme is robust to these compromises and preserves the
motion well. However, due to few of the bases learning the noise patterns, the BCS
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reconstructions suffer from noise like pixelated artifacts (see arrows in Fig. 2iv). In contrast
the sparse BCS scheme penalizes these noisy patterns, thus providing superior
reconstructions.

The experiment on cine data in Fig. 3 was done at a high acceleration of ≈ 6.4. We observe
TV to be suboptimal at this acceleration. This behavior was also observed in the studies in
[9]. It had patchy artifacts along time which highlight as speckles in the reconstructions. We
observe the BCS scheme to exhibit subtle noisy pixelations as some of the bases captured
noise. However, when we constrain the learned basis functions to be smooth, the
reconstructions improve considerably. The sparse BCS model had similar SER when
compared to kt FOCUSS but the pattern of error distributions are very different. The former
had more diffused errors, while kt FOCUSS had errors concentrated on the borders of the
heart.

4. CONCLUSION
We proposed a new algorithm to learn dictionary elements that are sparse in pre-specified
transform domains from under sampled k-space data for dynamic MRI reconstruction. A
majorize minimize algorithm with continuation was developed to solve the resulting
optimization problem efficiently. Our results suggest that noise patterns in the learned basis
functions can be considerably reduced by promoting sparsity of the dictionary in an
appropriate transform basis. Through various examples, we demonstrated the better
performance of the proposed method over current dynamic imaging schemes.
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Fig. 1.
Comparison of the sparse blind CS model with the blind CS model: An undersampling
reconstruction experiment on a reference myocardial free breathing perfusion MRI data is
performed. An example of the estimated spatial coefficients ui(x) and temporal basis
functions υi(t) for the pixels belonging to the right ventricle are shown for the two models.
Few image frames and the image time profiles are shown for the reference, BCS, sparse
BCS models in (c,d,e). Temporal intensity variation patterns corresponding to contrast
uptake (see the second basis function in both the models), and motion (see periodic ripples
corresponding to breathing motion) are depicted well in both the models. However, few
bases in BCS also contain random oscillations due to noise (ex: the fifth basis function in
(a)). This leads to noise like artifacts in the resulting BCS reconstructions (see arrows in
(d)). In contrast, the sparse BCS scheme penalizes the noise patterns, and the reconstructions
are devoid of such artifacts while maintaining the temporal fidelity.
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Fig. 2.
Validation using realtime free breathing data: The rows (a), (b), (c) correspond to a specific
spatial frame, the corresponding error image, and the temporal profile along a line. The
sampling mask for one frame is shown in i.b. The error images are scaled up by ≈ 5 fold for
better visualization. The k-t FOCUSS and TV constrained methods result in compromised
reconstructions with reduced temporal fidelity due to the presence of large inter-frame
breathing motion. The BCS scheme preserves the motion content. However the
reconstructions suffer from noisy artifacts due to learning of noisy bases (see arrows in iv).
In contrast, the sparse BCS scheme has reduced noise patterns while maintaining similar
temporal fidelity compared to BCS.
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Fig. 3.
Validation using cine data: The rows (a), (b), (c) correspond to a spatial frame during
systole, the corresponding reconstruction error image, and the image time profile for
different methods. The error images are scaled up by 9 fold for better visualization. The
sampling trajectory for one frame is shown in (i).b. TV exhibits suboptimal reconstructions
due to patchy artifacts along time. BCS shows subtle noise like oscillations (see the yellow
arrows in (iii a,c) due to few noisy temporal basis functions. The sparse BCS scheme has
reduced noisy artifacts and better temporal fidelity. We observe that the SER of sparse BCS
is similar to k-t FOCUSS. However, note that the errors are diffused over the entire image in
sparse BCS, while they are concentrated on the borders of the heart in k-t FOCUSS.
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