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ABSTRACT

Super-resolution localization microscopy relies on sparse ac-
tivation of photo-switchable probes. Such activation, how-
ever, introduces limited temporal resolution. High-density
imaging overcomes this limitation by allowing several neigh-
boring probes to be activated simultaneously. In this work, we
propose an algorithm that incorporates a continuous-domain
sparsity prior into the high-density localization problem. We
use a Taylor approximation of the PSF, and rely on a fast
proximal gradient optimization procedure. Unlike currently
available methods that use discrete-domain sparsity priors,
our approach does not restrict the estimated locations to a
pre-defined sampling grid. Experimental results of simulated
and real data demonstrate significant improvement over these
methods in terms of accuracy, molecular identification and
computational complexity.

Index Terms— Super resolution, High-density imaging,
Localization, Proximal gradient

1. INTRODUCTION

Fluorescence microscopy is an invaluable tool in cell biol-
ogy that has undergone many developments over the past
decade. In particular, far-field techniques such as stochastic
optical reconstruction microscopy (STORM) [1] and photo-
activated localization microscopy (PALM) [2] can achieve
nano-scale resolution by means of photo-switchable probes
and single-molecule localization algorithms. These methods
rely on sparse activation of fluorophore in both the spatial
and temporal domains. As a result, the Point-Spread Func-
tions (PSFs) of activated fluorophores do not overlap,they
can be localized individually. Common localization methods
are based on a least-squares [1, 2] or maximum-likelihood[3]
criteria. In the above context, reconstructing a sub-cellular
structure typically requires several thousands of frames . This
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implies acquisition times of an order of minutes, which is a
serious limitation for live-cell imaging.

One possible approach for overcoming this limitation is
high-density imaging. This means that the acquired data
frequently contains overlapping PSFs. There exist few al-
gorithms that can address such a case. For example, the
DAOSTORM algorithm[4] fits multiple overlapping spots in
an greedy manner, adding more point-sources at each iteration
for improving the data fit in regions of overlapping sources.
The CSSTORM (compressed sensing STORM) method [5]
uses a sparsity-promoting prior for reconstructing the biologi-
cal structure on a finer sub-pixel grid. The latter approach has
been shown to be more adapted to high-density data. Specifi-
cally, the CSSTORM method formulates the localization as a
convex optimization problem, which is then solved by linear
programming. As linear programming is computationally de-
manding, the CSSSTORM algorithm takes a local approach
in which every camera image is divided into several blocks of
7×7 pixels that are processed individually. This non-global
approach can potentially degrade the localization accuracy.

In this paper, we present a new localization algorithm
for high-density imaging. We combine a global sparsity-
promoting variational formulation with a Taylor approxima-
tion of the shifted PSF which is valid within a small neigh-
borhood of the finer sub-pixel grid. Instead of being tied to
the s ub-pixel grid, this allows us to estimate the spatial loca-
tions of the particles on the continuum, demonstrating better
accuracy.

2. PROBLEM FORMULATION AND EXISTING
APPROACHES

At a given time instant, we can describe the activated fluo-
rophores by a collection of infinitesimal sources:

f =

K∑
k=1

c[k] δ(· − xk).

Here, K is the number of point sources, xk is the position
of the k-th source and c[k] is its brightness in terms of the
number of emitted photons. In a space-invariant model, an
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image is obtained by convolving with the PSF h of the micro-
scope and then sampled on a Cartesian grid. Furthermore, the
measurements are perturbed by a background signal b and a
random noise contribution represented by N :

g[n] ∼ N

(
K∑
k=1

c[k]h(n− xk) + b

)
.

The goal is then to retrieve the coefficients c[k] and the lo-
cations xk from the measurements g[n]. This can be formu-
lated as a non-linear least-squares problem, where the goal is
to minimize the cost functional

J(c,x, b) =
∑
n

(
g[n]−

K∑
k=1

c[k]h(n− xk)− b

)2

. (1)

Under the assumption that there is no overlap, the number of
point sources K can easily be estimated and each source can
be localized independently (e.g., using a minimization proce-
dure that alternates between estimating c and estimating x).
However, in high-density imaging, K cannot be estimated ac-
curately due to overlapping PSFs. Thus, one needs to make
additional assumptions with respect to the spatial density of
activated molecules. An alternative is to reconstruct an image
on a finer sub-pixel grid while promoting a sparsity constraint
on the brightness coefficients, for example by penalizing their
`1 norm. The cost function is the following form

J(c,x, b) =
∑
n

(
g(n)−

∑
m

c[m]h(n− m
M
)− b

)2

+ λ
∑
m

|c[m]|,

(2)
whereM is an oversampling factor and λ is the regularization
parameter. An equivalent formulation (used for example in
[5]) is to minimize

∑
m |c[m]| subject to

∑
n

(
g(n)−

∑
m

c[m]h(n− m
M

)− b
)2

≤ β2, (3)

where β2 is noise variance. In the unconstrained form (2),
λ is not only related to the noise variance β2, but also has a
direct interpretation in terms of the minimal brightness that
a point source must have in order to be considered active.
However, both formulations are still based on the sub-pixel
grid. Moreover, we have observed experimentally that im-
posing sparsity often results in an underestimation of the co-
efficient value c[k] and their distances among closely spaced
particles, which implies a spatial bias of localization.

3. CONTINUOUS-SPACE LOCALIZATION WITH
SPARSITY CONSTRAINTS

Our approach combines continuous domain localization with
the sparsity paradigm. Going back to (1), we can describe
every point source position xk by the closest grid point mk

M :

xk =
mk

M
+ εk.

We then use a first-order Taylor-series approximation

h(n− xk) ' h(n−
mk

M
)− εTk∇h(n−

mk

M
)

and rewrite (1) as

J(c, ε, b) =∑
n

(
g[n]−

K∑
k

c[k]
[
h(n− mk

M
)− εTk∇h(n− mk

M
)
]
− b
)2

.

(4)
Finally, we impose sparsity promoting constraints on (4), by
carrying out following three subsequent phases:

Phase1 :
min
c,b

(
‖g −DHc− 1b‖2 + λ

∑
m c[m] + IR+(c)

)
Phase3 :

min
c,b

(
‖g −DHc− 1b‖2 + IS(c)

)
Phase3 :

min
ε

(
‖(g −DHc− 1b)−D∇HCε‖2 + Iε̃(ε)

)
(5)

where 1 is constant vector, D is a downsampling matrix, H
and ∇H are convolution matrices corresponding to h and
∇h respectively, S is indices of non-zero c[m] from phase
1 and C = diag(c). The indicator functions IR+(c), IS(c)
and Iε̃(ε) are as follows:

IR+(c) =

{
0 if ∀m, c[m] ≥ 0;

∞ otherwise;

IS(c) =

{
0 if ∀c[m] > 0, m ∈ S
∞ otherwise;

Iε̃(ε) =

{
0 if ∀m, |ε[m]| ≤ ε̃;
∞ otherwise.

Conceptually, we first estimate the locations and the bright-
ness coefficients on a fine uniform grid using the sparsity con-
straints of Phase 1. Then, we refine these quantities while
restricting their support to the set S in Phase 2. Finally we
introduce the displacements ε in Phase 3, hence allowing for
continuous domain location. We found it necessary to intro-
duce Phase 2 and Phase 3 to compensate for the estimation
bias introduced by the sparsity constraint in Phase 1. Thus,
the proposed problem formulation (5) is more robust than (2)
with respect to localization accuracy.

In general, (5) is a large-scale problem involving millions
of variables. Instead of linear programming, we use a prox-
imal gradient method where cost function is minimized it-
eratively via proximal mapping such as soft-thresholding or
projection operations. We optimize (5) as follows.
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Fig. 1. Monte Carlo simulation. (a) Localization error. (b) Identified molecular density.

Simplified Algorithm 1
1. Initialization : Initialize variables.

2. Phase 1: Repeat until stop criterion

ck+1 = Tλ/Lc (ck −
2
Lc

(DH)T (DHck + 1bk − g))
bk+1 = bk − 2

Lc
1T (DHck + bk − g))

3. Phase 2: Repeat until stop criterion.

ck+1 = PS(ck − 2
Lc

(DH)T (DHck + 1bk − g))
bk+1 = bk − 2

Lc
1T (DHck + bk − g))

4. Phase 3: Repeat until stop criterion.

Cεk+1 = PCε̃(Cεk − 2
Lε
∇HTDT (D∇HCεk

−(DHc+ 1b− g))

Here, Lc ≥ 2λmax(A
TA) and Lε ≥ λmax(∇AT∇A) denote

Lipschitz constants where A = [H 1] and ∇A = [∇H 1].
PS(x) and PCε̃(x) are projection operators on the sets de-
fined by the characteristic functions IS(c) and Iε̃ respec-
tively. The soft-thresholding operator Tα(x) is defined as

Tα(x)i =
{
xi − α if xi > α,
0 otherwise.

The simplified Algorithm 1 has linear convergence rate,
which is relatively slow. Thus, the proposed algorithm uses
the faster proximal gradient method called MFISTA [6] which
improves the convergence rate by one order. We can easily
modify the described form by using two-step updating rules
for next estimate (see [6] for details). Due to the limited
space, we omit further details.

The proposed algorithm typically returns several non-zero
valued elements of the c and corresponding ε[m] near the true
position of a fluorophore because of the high coherence of
convolution matrixH and∇H . This effect was also reported
in [5]. We follow the post-processing method used in [5] in
order to retrieve number of localized particles and their loca-
tions. In the method, neighboring non-zero c[m] are counted
as a cluster. We then calculates each center of mass with c[m]
and ε[m] as the localized molecular position.

4. EXPERIMENTS

We performed experiments both on synthetic data (Monte
Carlo simulations) and on real high-density STORM data.

In every experiment, the regularization parameter is set to

λ = background+

√∑
g(n)

4 ; here background is estimated
by averaging 4×4 pixels in boundary region and

∑
g(n)

represents an estimate of the noise variance, assuming that
the CCD shot noise is Poisson distributed. We observed that
this choice worked well with real data too. The oversampling
factor M is equal to 7 and the displacement of ε is bounded
by half of the finer grid size. The initial guess is obtained by
Wiener-type filtering: c0 = (HTDTDH + σ2I)HTDTg.
After Phase 1 and Phase 2, coefficients c[m] that are below
10% of the maximum of c are discarded as spurious points.

In the simulated data, each molecule corresponds to a
Gaussian PSF of 340nm full width half maximum (FWHM)
and 70 background photons are added to each CCD pixel of
size 160 nm. In addition, we introduced Poisson shot noise
and a small Gaussian readout noise with unit variance. The
number of emitted photons is 4000 per molecule. We com-
pared our algorithm with two other methods: conventional
single-molecule least-square fitting and CSSTORM[5]. The
least-squares method works by fitting an elliptical Gaussian
PSF to local maxima of the image [2]. CSSTORM divides
the image into several blocks of 7×7 pixels, excluding outer-
most pixel-wide region in each block for the localization. To
quantify the error, we find the closest true molecular position
to each localized position and then calculate the standard de-
viation of the localization errors and number of identified true
molecules.

For the Monte Carlo simulation, we generated a wide
range of molecular densities, from 0.02µm−2 to 7µm−2.
We used 100 realizations for every density. In all of our
experiments, the proposed algorithm demonstrated better re-
sults than the least square fitting method and CSSTORM.
The localization of the proposed algorithm is comparable
to the least square fitting method in the very sparse den-
sity case (0.02µm−2). For the high-density cases, the least
square method is not effective, as expected. We also found
that our global approach is more accurate than CSSTROM
over the whole range of molecular densities. This improve-
ment mainly originates from our global approach in phase
1. Additional improvement of about 10% is achieved by the
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Fig. 2. Synthetic resolution phantom. (a) Diffraction limited
image. (b) True phantom image. (c) CSSTORM image. (d)
Image obtained with the proposed algorithm. (e) line plot in
(b-d). Scale-bars in (a-d) are 500nm.

refinement steps in Phases 2 and 3 thereby reducing the effect
of the discrete grid and the spatial bias induced by the spar-
sity constraint of Phase 1. Therefore, the proposed algorithm
can identify over 10 times more molecules than least square
fitting and twice more than CSSTORM at the same localiza-
tion accuracy. In addition, the proposed algorithm is twice as
faster as CSSTORM in spite of the additional fine-tuning.

Next, we generated 1000 frames of synthetic data with
high activation density, representing 5 lines that are diverg-
ing equi-angularly. The minimum distance between two ad-
jacent lines is 40nm. Super-resolution images obtained with
CSSTORM and the proposed algorithm are shown in Figure
2. Only the proposed algorithm clearly resolves the minimum
gap between the lines2(e).

Last, we compared the algorithms on 200 real STORM
images of microtubules labeled with Alexa 647. The exposure
time for each image was 100 ms. In figure3(b-d), CSSTORM
and the proposed algorithm both identified significantly more
molecules than the least-squares method. However, it appears
that the proposed algorithm also outperforms CSSTORM
in configurations with crossing-over microtubules, see Fig.
3(e,f).

5. CONCLUSION

We presented a new high-density localization algorithm that is
based on a space-domain sparsity constraint without restrict-
ing the particle positions to the sub-pixel grid. Our approach
yields better localization accuracy and higher molecular iden-
tification rates than other currently available methods over a
wide range of experimental conditions. Moreover, it has re-
duced computation times compared to CSSTORM, which is
also based on a sparsity-promoting prior. Our experimen-
tal results indicate that the proposed approach could reduce
the number of images that is required for obtaining super-
resolution image reconstruction. This is crucial for studying
biological interactions at the nanometer scale.

a

c

e f

b

d

Fig. 3. Microtubules stained with Alexa647. (a) Diffraction
limited image. (b) Image obtained by least-squares fitting. (c)
CSSTORM image. (d) Image obtained with the proposed al-
gorithm. (e-f) Close-up images of solid and dotted line boxes
in (c,d) Scale-bars are 2µm in (a-d) and 300nm in (e-f).
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