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Abstract
The main focus of this paper is to introduce a computationally efficient algorithm for solving
image recovery problems, regularized by the recently introduced higher degree total variation
(HDTV) penalties. The anisotropic HDTV penalty is the fully separable L1 semi-norm of the
directional image derivatives; the use of this penalty is seen to considerably improve image quality
in biomedical inverse problems. We introduce a novel majorize minimize algorithm to solve the
HDTV optimization problem, thus considerably speeding it over the previous implementation.
Specifically, comparisons with previous iterative reweighted algorithm show an approximate ten
fold speedup. The new algorithm enables us to obtain reconstructions that are free of patchy
artifacts exhibited by classical TV schemes, while being comparable to state of the art total
variation regularization schemes in run time.

Index Terms
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1. INTRODUCTION
The recovery of image data from ill-conditioned measurements is a common problem in
many biomedical applications, including MRI, PET, and microscopy. Our main motivation
is the application of this framework to accelerated MRI, where we consider the recovery of
images from under sampled Fourier data. Many regularization schemes have been proposed
to make the recovery well-posed. One of the popular regularization penalty is the total
variation (TV) functional, which is the ℓ1 semi-norm of the image gradient. The TV penalty
has many desirable properties such as convexity, rotation invariance, and most importantly
the ability to preserve image edges. However, since TV enforces reconstructions with sparse
gradients, the reconstructed images often suffer from patchy or staircase artifacts. To
overcome these problems, there has been a growing interest in using higher order image
regularization penalties [1, 2, 3, 4, 5, 6, 7].

We have introduced a family of image regularization penalties termed as higher degree TV
(HDTV) functionals [1, 2]. These penalties generalize several of the classical higher degree
regularization schemes mentioned above and provide improved reconstructions. The
anisotropic HDTV penalty is the fully separable L1 norm of the nth degree directional image
derivatives. Our experiments show that HDTV regularization inherits the desirable
properties of standard TV, while minimizing the patchy artifacts and enhancing the ridge-
like features in the image. The main challenge associated with the current HDTV framework
is its high computational complexity compared to the state of the art TV schemes.

NIH Public Access
Author Manuscript
Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 March 19.

Published in final edited form as:
Proc IEEE Int Symp Biomed Imaging. 2013 ; : 326–329. doi:10.1109/ISBI.2013.6556478.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Specifically, the iterative reweighted algorithm in the previous implementation involves
subproblems with large condition numbers, resulting in slow convergence.

The main focus of this paper is to introduce a computationally efficient HDTV algorithm.
We approximate the L1 penalty by a Huber function, parametrized by a single parameter β;
the quality of the approximation improves as β → ∞. We then majorize the corresponding
approximate penalty term by a quadratic function. This majorization enables us to decouple
the reconstruction into two simple sub-problems, each of which have analytical solutions.
Since the choice of β involves a compromise between accuracy and convergence rate, we
rely on a continuation strategy to obtain a fast and accurate algorithm. Specifically, we start
with a small value of β and gradually increase it to a high value. We observe that the
proposed algorithm offers approximately a ten fold speedup compared to the iteratively
reweighted majorize minimize (IRMM) scheme. This development enables us to obtain
higher quality reconstructions that are free of patchy artifacts exhibited by classical TV
schemes, while being comparable to state of the art total variation schemes in run time. The
MATLAB implementation of the fast HDTV algorithm is available for download at http://
www.engineering.uiowa.edu/~jcb/software.html.

2. BACKGROUND
We consider the recovery of a continuously differentiable complex image f from its noisy
and undersampled measurement b, specified by b = (f) + n. The problem can be
formulated as an optimization problem:

(1)

The standard TV regularization is the L1 norm of the image gradient, specified as 1(f) =
∫Ω/∇ f|dr. The anisotropic HDTV regularization penalty [1] is defined as:

(2)

where fθ,n(r) is the rotation steerable nth degree directional derivative along the unit vector
uθ = (cos θ, sin θ). Note that the directional derivatives are rotation steerable:

(3)

Here, sn(θ) is the vector of trigonometric polynomials and n is the differential operator that
provides the partial derivatives of f. For example, in the 1st degree case (n = 1):

(4)

The HDTV penalty is convex and rotation invariant. Moreover, since the L1 norm is fully
separable, a strong directional derivative at a specified orientation will not affect the
attenuation of the directional derivatives along other directions. This is not the case with
most of the classical higher order TV schemes [3, 4, 5, 6, 7].

Since sparsity promoting non-quadratic penalties are non-differentiable, it is difficult to
solve the optimization problem using gradient-based algorithms (e.g. conjugate gradient
method). In our previous work, we use an IRMM algorithm. Specifically, the optimization
problem (1) is majorized by a weighted quadratic expression, which is solved using a
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conjugate gradient (CG) algorithm. The algorithm alternates between CG optimization and
the recomputation of the weights from the current iterate. Since the spatially varying weights
often tend to very high values, the quadratic subproblems have high condition numbers.
Hence, the resulting algorithm is computationally expensive.

3. FAST MM ALGORITHM FOR HDTV
The HDTV recovery of a function f : ℝ2 → ℂ from its measurements b = (f) + n is posed
as:

(5)

Since the absolute function in the L1 norm is not continuously differentiable, we
approximate it by the Huber function:

(6)

The approximate cost function is thus specified by :

(7)

Note that this approximation tends to the original HDTV penalty when β → ∞. To realize a
computationally efficient algorithm, we majorize the Huber function in the above expression
by the quadratic function [8]:

(8)

where g(θ, r) : ℝ2 × [0, 2π] → ℂ is an auxiliary function. The quadratic function majorizes
the original penalty when ψ (|g(θ, r)|) = |g(θ, r)| [9]. With this majorization, the cost function
can be expressed as

(9)

Note that the optimization algorithm now involves the minimization of the right hand side of
the above expression with respect to both functions f(r) : ℝ2 → ℂ and g(θ, r) : ℝ2 × [0, 2π]
→ ℂ. We rely on an alternating minimization algorithm to solve the two functions.
Specifically, we alternate between the minimization with respect to fθ,n(r) and g(θ, r) as
shown below.

3.1. Step one: minimization with respect to g(θ, r), assuming fθ, n(r) to be fixed
Assuming fθ,n (r) to be fixed, we solve the optimization problem with respect to g(θ, r). We
term this step as the ”g-subproblem”. The minimization at each θ can be de-coupled to
obtain

(10)

Minimizing f (g) with respect to g, we obtain:
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(11)

To obtain good reconstructions that are consistent with the continuous domain formulation,
g(θ, r) needs to be evaluated for all angles; the storage of gθ,n for large number of angles
will result in an algorithm with high memory demand. Fortunately, we will see in the next
subsection that the rest of the algorithm does not need g(θ, r); ∀θ, but its projection to the

space spanned by s(θ), specified by . This simplification results in an
algorithm with considerably less memory demand.

3.2. Step two: Minimization with respect to fθn(r), assuming g(θ, r) to be fixed
Assuming that g(θ, r) is fixed, we now minimize (9) with respect to fθ, n(r). This can be
reformulated as

(12)

where

(13)

Here, the norm and the inner product are defined on L2[0, 2π]. Ignoring the constant term
∫Ω∥g(θ)∥2dr in the above expression, we obtain:

where . Here, we used the steerability
relationship of the directional derivatives from (3) to simplify the expression. Note that the
criterion g(f) does not depend on g(θ, r), but only its projections to the space of
trigonometric functions sn(θ), specified by q(r). Since we do not have to store the variable
g(θ, r) for all values of θ, this simplification considerably reduces the memory demand of
the algorithm. In addition, the above expression is independent of the directional derivatives
fθ,n(r); it is only dependent on the partial derivatives of f, thanks to the steerability of the
directional derivatives in terms of the partial derivatives. Setting the variational derivation of

g(f) to be zero, we obtain:

(14)

The operator  has a simple expression in the discrete Fourier domain. The
following are the discrete Fourier domain expressions in 1st and 2nd degree case:

(15)

(16)

Here, ℱ denotes the discrete Fourier transform operator. These equations will get modified
by the discrete approximation of the derivatives (e.g. finite differences). Thus, if the
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measurements are Fourier samples on a Cartesian grid (i.e. f = Sℱ), (14) can be simplified
by evaluating the discrete Fourier transform of both sides. Here, S is the sampling operator
that picks the appropriate Fourier samples. Computing the discrete Fourier transform of both
sides of (14), we get

(17)

Thus, we obtain the analytical expression for f as:

(18)

When the Fourier samples are not on the Cartesian grid (for example, in parallel imaging),
where the one step solution is not applicable, we could still solve the minimization problem
using CG iterations.

4. RESULTS
We study the performance of the fast HDTV algorithm in the context of compressed
sensing. To quantitatively compare methods, we rely on the signal to noise ratio (SNR)
measure, defined as:

(19)

where f ̂ is the reconstructed image, forig is the original image, and  is the Frobenius
norm.

We first study the dependence of the convergence rate on the choice of the parameter β and
the specific continuation strategy to increment it. All the methods were implemented in
MATLAB on an Intel Dual Core 2.66 GHz PC. In this work, we start with an initial value
and increment it by a constant factor (i.e., βnew = β · βinc). We consider the reconstruction of
a brain image with the accelerator of 1.65 using the fast HDTV algorithm. The plot of the
cost as a function of number of iterations is shown in Fig. 1(a). It is observed that using the
continuation scheme, where the parameters are initialized with a relatively small value and
increased at each iteration, results in fast convergence.

We compare the proposed fast HDTV algorithm with the IRMM algorithm in the context of
the recovery of brain MR image with acceleration factor of four in Fig. 1(b). We plot the
SNR as a function of the CPU time using TV and 2nd degree HDTV with the IRMM
algorithm and the proposed algorithm, respectively. We observe that fast HDTV provides an
approximate speedup of 10-fold, compared with IRMM. We also implement the algorithm
in MATLAB on a Linux workstation with two Core 2 quad-core processors. The proposed
algorithm runs in around 6-7 seconds for a 256×256 image. The difference between the
reconstructed images of both alorithms is minor. Thus, the speedup by fast HDTV algorithm
does not impact the quality of the reconstruction.

10] We finally demonstrate the improvement in image quality offered by HDTV algorithm
over standard TV. The reconstructions of a MR wrist image at acceleration rate of 3 with
35dB noise added are shown Fig. 2. We observe that there is a 0.3dB improvement in
HDTV2 over standard TV. We also see that HDTV2 preserves subtle details. Besides, the
image reconstructed by HDTV2 is more natural than TV reconstruction. The reconstructions
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of a brain MR image at acceleration of 1.65 and 25dB noise added is shown in Fig. 3. It is
observed that HDTV2 provides more accurate reconstructions, while TV reconstruction
shows patchy artifacts, which blur some of the details in the image.

5. CONCLUSION
We introduced a computationally efficient HDTV algorithm for MR image recovery.
Specifically, we use a fast majorize minimize algorithm to solve the optimization problem.
Our experiments show that the proposed algorithm reduces the computation time by 10-fold,
compared to the IRMM method used previously,. The numerical results show that compared
with TV, the fast HDTV algorithm overcomes the patchy/staircasing artifacts in the
reconstruction.
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Figure 1.
(a) Comparison of different continuation schemes show that using continuation scheme
results in fast convergence. (b) Comparison of IRMM with fast HDTV algorithm. The blue,
blue dotted, red, red dotted curves correspond to TV by fast HDTV, TV by IRMM, HDTV2
by fast HDTV, HDTV2 by IRMM algorithm, respectively. We extend the original plot by
dotted lines for easier comparisons of the final SNR. We see that fast HDTV takes 1/6 of the
time taken by IRMM for TV, and 1/10 of the time taken by IRMM for HDTV2.
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Figure 2.
Compressed sensing reconstruction of a wrist MR image from noisy and undersampled data.
The acceleration factor is 3 with 35dB additive noise. (a) and (d) Original image. (b) and (c)
TV reconstruction and error image. (e) and (f) HDTV2 reconstruction and error image.
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Figure 3.
Compressed sensing recovery of a brain MR image from undersampled and noisy data. The
acceleration factor is 1.65 with 25dB additive Gaussian noise. (a) and (d) Original image. (b)
and (c) TV reconstruction and error image. (e) and (f) HDTV2 reconstruction and error
image.
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