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Abstract
We present a probability model for lung airways in computed tomography (CT) images. Lung
airways are tubular structures that display specific features, such as low intensity and proximity to
vessels and bronchial walls. From these features, the posterior probability for the airway feature
space was computed using a Bayesian model based on 20 CT images from subjects with different
degrees of Chronic Obstructive Pulmonary Disease (COPD). The likelihood probability was
modeled using both a Gaussian distribution and a nonparametric kernel density estimation method.
After exhaustive feature selection, good specificity and sensitivity were achieved in a cross-
validation study for both the Gaussian (0.83, 0.87) and the nonparametric method (0.79, 0.89). The
model generalizes well when trained using images from a late stage COPD group. This probability
model may facilitate airway extraction and quantitative assessment of lung diseases, which is
useful in many clinical and research settings.

Index Terms
CT; lung; probability model; airway segmentation; chronic obstructive pulmonary disease

1. INTRODUCTION
Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of death and
disability in the world. COPD is characterized by progressive expiratory airflow obstruction,
due to one or the combination of two phenotypes: emphysema and airway obstruction. The
analysis of thoracic computed tomography (CT) images helps to better characterize COPD
by studying anatomical remodeling due to tissue loss and changes in airway dimensions.
This analysis relies on accurate segmentation of various structures in the lungs, such as
airways and vessels, made challenging because of natural and pathological variability in
size, curvature, orientation, and proximity to other organs.

Traditionally, airways in lung CT images have been associated with image features such as
low attenuation image values – airways are filled with air-, surrounded by high attenuation
circular or semi-circular shapes. To segment airways, the search space could typically
encompass the volume of the entire lung. To limit the search space, prior knowledge of the
lung anatomy can be used, for instance by starting the search from a point in the trachea, to
detect the rest of the airway tree using region growing algorithms. Unfortunately, these
methods often leak [1], [2] into the parenchyma due to emphysema-related wall thinning or
partial volume effects that blur the airway walls. Furthermore, they often fail to detect
smaller airway structures and do not provide a complete segmentation in the presence of
airway obstruction. Alternative methods such as scale-space particle systems [3] sample the
entire search space, thus allowing an efficient comprehensive search in the entire lung.
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Lo et al. [4] used local image descriptors to model airway appearance as input for
subsequent segmentation. Unlike this work, the objective of this study is to present an
airway posterior probability model integrating the information of the feature space. The
outcome of such model is a probabilistic map that would be useful to optimize the cost
function for region growing or fast marching-based segmentation algorithms, and provide
morphological clues for an efficient sampling of the image space.

The manuscript is organized as follows: In Section 2, we describe the airway image features
and the probability model. In Section 3, we describe the experiment carried out to verify the
model proposed. In Section 4, we present the results of the experiment. In Section 5, we
discuss the challenges and future extensions.

2. AIRWAY MODEL
2.1. Airway Features

In CT images, lung airways display characteristic features. For instance, it is often observed
that the airways are found next to vessels running in a parallel direction [1]. In addition, we
formalize other features that characterize airways as follows: (1) airway lumens are dark
elongated tubular structures, and (2) airways comprise of a lumen surrounded by an airway
wall.

The eigenvalue analysis of the Hessian matrix has been proposed to detect various image
features [5]. The magnitude, sign and relative values of the eigenvalues λk (k=1,2,3)
corresponding to the kth normalized eigenvector ûk, ordered such that |λ1|≤|λ2|≤|λ3|, give
clues as to the type of underlying structure (see Fig. 1). In this paper we have used
combinations of these eigenvalues to derive local operators that produce maximal response
for vessels, airways and airway wall voxels, as summarized in Table 1.

All Hessian matrix-based features were calculated at four different scales using Gaussian
function with standard deviation σ ranging from 0.5 to 2.0 mm. For each feature, the value
taken is the maximum response across the scales.

Using prior knowledge about the lung anatomy, we can define the following features for
each voxel x:

1. Intensity: Intensity I(x) is the voxel value in Hounsfield units (HU).

2. Vesselness and airwayness: Vesselness V(x) is computed using Frangi’s filter [5].
Somewhat similar to vesselness, airwayness A(x) is a measure that selects voxels
whose combination of eigenvalues is given as defined in the second row of Table 1.

(1)

where  and α, β, and c are parameters that
control the sensitivity of the ratios, set at 0.5, 0.5, and 70, as suggested in [5].

3. Wallness: Wallness W(x) detects structures with a change in the direction of the
highest curvature. We define a novel measure that computes the normalized
Laplacian, , of the mode of the Hessian  [6] in the highest curvature direction
(û3) modulated by the mode itself, as given by
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(2)

The Laplacian compensates the response of the mode of the Hessian around the
wall boundaries to give a strong response at the wall center.

4. Distances to vessels, airways and bronchial walls: Histogram equalization was
performed on each of the computed features in order to have an equal distribution
of the responses at a certain threshold. Only voxels with post-equalization value >
0.5 were considered to be vessels, airways and bronchial walls, respectively. For
each voxel, the distances to the vessels Dv(x), airways Da(x) and bronchial walls
Dw(x) were then computed using Euclidean distance transform.

2.2. Probability Model
The posterior probability P(A|X̂) of those voxels being airway voxels given the feature
matrix X̂, was estimated using the well-known Bayes’ theorem

(3)

where Ptotal = Pl(X̂|A) · Pa(A) + Pl(X̂|Ā) · Pa(Ā).

A similar expression can be derived for the non-airway class Ā. The a priori probabilities of
being airway Pa(A) and non-airway Pa(Ā) are simply taken as the fraction of airway voxels
and non-airway voxels with respect to the total voxel count in the reference data,
respectively.

The likelihood of airway Pl(X̂|A) and non-airway Pl(X̂|Ā) for the feature space X̂ was
modeled using a single multivariate Gaussian distribution and a nonparametric kernel
density estimation technique based on non-linear principal component analysis (PCA) [7].

The probability distribution function of the Gaussian model is given by

(4)

where μ is the D-dimensional mean of the feature matrix X̂, Σ is the covariance matrix, and |
Σ| is the determinant of Σ.

The likelihood computed by the kernel density estimation method is defined as

(5)

where U is the eigenvector matrix of the kernel matrix K(Ŷ, Ŷ) for the training data vector

Ŷ. The kernel is chosen to be a Gaussian,  For N testing data points in X̂,

 is a 1×N column matrix of ones.
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3. EXPERIMENTAL PROCEDURE
To verify the airway model proposed, we analyzed 20 CT images from patients enrolled in
the COPDGene Program (www.copdgene.org), a multicenter study of genetic and
epidemiologic risk factors associated with COPD. Four images were of healthy subjects and
the rest were evenly chosen from each Global Initiative for COPD (GOLD)
(www.goldcopd.com) stage 1–4. The images were taken with different scanners using the
COPDGene acquisition protocol.

3.1. Reference Construction
The reference was constructed from a conservative segmentation of the left and right airway
trees using a fast marching algorithm, seeded at the trachea. Arrival time was thresholded
initially at 100, gradually increased until leakage (voxel count increase > 100%) occurred,
upon which the previous value was taken as the stopping time.

The centerline was calculated using 3D binary thinning of the fully-grown tree. Voxels in
the centerline, as well as those within the one-pixel dilate threshold, were labeled Airway.
Voxels in the zone between 5 to 10mm from the airway tree were labeled Non-airwayclose.
All voxels from 10 to 20mm outside this zone were given the label Non-airwayfar. The
feature matrix X̂ was calculated for all voxels in each group label. Fig. 2 illustrates a slice of
the original CT, the conservative airway tree and the three labeled zones.

3.2. Training and Cross-validation
The feature extraction method described in Section 2 was implemented using InsightToolkit
and UNU (Utah Nrrd Utilities). Images of the left and the right lung were trained separately.
Two classes were defined: the airway class (CA), and the combined close and far non-airway
classes (CNA). Features from each class were normalized and scaled using the mean and
standard deviation. Each class was then downsampled –to limit each class of every image to
a manageable maximum of 5000 points– before calculating the posterior probability.
Training and 5-fold cross-validation were performed in matlab (Mathworks, Natick, MA,
US) to test the performance of our posterior probability. Specificity (Sp.) and sensitivity
(Sens.) were computed using a maximum a posteriori probability (MAP) classifier criterion.
In addition, the medians of the histogram for the posterior probabilities in the testing set
were computed for both airway and non-airway classes.

3.3. Feature Selection
We trained and cross-validated separately the Gaussian and nonparametric models, using (1)
all the features, and (2) an exhaustively determined optimal combination of features for each
model. The minimum distance to the perfect classifier (0,1) (ACd) was used to rank the
combinations, maximizing sensitivity over specificity. The optimal combinations for the
Gaussian and the nonparametric likelihood models are [A(x), Dv(x), Dw(x), Da(x), I(x)], and
[A(x), Dv(x), Da(x), I(x)], respectively.

4. RESULTS
Cross-validation results for feature spaces of airway class X̂(CA) and non-airway class X̂
(CNA) are given in Table 2. The results reveal that feature selection is important in the
Gaussian model but did not greatly improve the nonparametric method. Fig. 3 shows the
histograms of two posterior probabilities P(A|X̂(CNA)) and P(A|X̂(CA)), computed using
nonparametric method. While for both models, these histograms have single modes at 0 and
1; the descent in the histogram peak is steeper in the Gaussian model (data not shown), as
suggested by the histogram median values MA and MNA given in Table 2.

Rudyanto et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2013 November 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Table 3 shows the results of analyzing the performance of the classifier trained with features
only from subjects within the same GOLD stage. For the Gaussian model, increasing
severity of COPD in the training data increases specificity and lowers sensitivity, as shown
in Fig 3. In both models, using the healthy group as training data obtained the best
performance. Using subjects with GOLD Stage 1 as training data produced worst
performance, possibly due to inflammation process often observed at the onset of COPD.

The posterior probability maps obtained for a sample CT slice are shown in Fig. 5. The
images obtained are noisy, although they provide a good indication of the location of the
airways. Some regions of the lungs affected by emphysema as well as vessel borders and
lung borders have high probability. Interestingly, the probability for a small airway such as
the one shown in Fig 5 (d) quickly goes to zero in the Gaussian model, producing
discontinuity, while the nonparametric method assigns non-zero values.

Finally, Fig. 6 shows the normalized values of individual features for those voxels with
posterior probability higher than 0.9 and lower than 0.1. The features that best distinguish
both groups are those in the optimal feature set.

5. DISCUSSION
In this paper, we present an approach to compute the posterior probability of airways based
on local features extracted from CT images of the lungs. Amongst the features proposed
here is a novel multi-scale wallness measure to detect bronchial wall. The posterior
probability has been computed by fitting to the training data two likelihood models: a simple
Gaussian distribution and the nonparametric kernel density estimation based on kernel PCA.

The nonparametric method outperformed the Gaussian model, but not dramatically.
Optimizing the set of features significantly improved the specificity of the Gaussian model,
which was not observed using the nonparametric method. This suggests the nonparametric
model is more resilient towards inclusion of less relevant features.

Somewhat unexpected was the exclusion of distance to wall from the set of optimal features
for the nonparametric model. It could be due to the noisy wallness measure. Its refinement
will be the scope for further study. The use of more sophisticated machine learning methods,
such as boosting, may also help us to identify informative features in the automatic feature
selection.

Here, we have used naïve a priori probability using the ratio of the number of samples in the
class and the total number of samples. Results may be improved by leveraging an airway
atlas as prior probability. This highlights the flexibility of our approach to include additional
information.

Analysis by GOLD stages yields an interesting result: the optimal set of features serves as a
stable airway descriptor despite the severity of COPD.

In conclusion, the computed airway probability map integrates valuable information of the
feature space and can be used as prior for many segmentation schemes that depend on cost
functions.
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Fig. 1.
Principal directions of the Hessian of various structures: (left) wall, (center) airway, and
(right) vessel.
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Fig. 2.
(left) 2D coronal slice from the original CT; (center) 3D rendering of the conservative
segmentation by fast marching; (right) Three labeled zones: Airway zone in white, Non-
airwayclose zone in pink and Non-airwayfar zone in red.
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Fig. 3.
Histograms of the posterior probabilities P(A|X̂(CA)) and P(A|X̂(CNA)) as calculated by the
nonparametric method.
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Fig. 4.
Specificity-sensitivity plot of classifier trained with only healthy (H) and GOLD stages (1–
4) subjects.
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Fig 5.
(a) Sample CT slice showing a thin airway (marked with an ellipse). (b–c) Probabilistic
images computed by the Gaussian model and the nonparametric method using their
respective optimal feature sets. (d) Magnified image of the airway in (a). (e–f) Magnified
images of the probabilities computed by the Gaussian model and the nonparametric method.
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Fig. 6.
Normalized values of each feature for voxels with high and low evaluated posterior
probability of being airways.
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Table 1

Possible structure patterns given combination of the Hessian eigenvalues λk in 3D images.

λ1 λ2 λ3

Bright tube (e.g. vessels) Low ≈ 0 High− High−

Dark tube (e.g. airways) Low ≈ 0 High+ High+

Bright sheet-like (e.g. airway walls) Low ≈ 0 Low High−
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