
TUMOR GROWTH MODELING BASED ON DUAL PHASE CT AND FDG-PET 

 
Yixun Liu

1
, Samira M. Sadowski

2
, Allison B. Weisbrod

2
, Electron Kebebew

2
, Ronald M. Summers

1
 and Jianhua Yao

1
 

 
1
Clinical Image Processing Service, Radiology and Imaging Sciences, NIH 

2
Endocrine Oncology Branch, National Cancer Institute, NIH 

 
 

ABSTRACT 

In this paper, we presented a method to deal with tumor growth 

prediction using multimodality non-invasive clinical imaging 

data. We developed a reaction-diffusion tumor growth model 

that (1) relates cell metabolic rate and tumor growth, and (2) is 

driven by clinical imaging data. The metabolic rate was 

incorporated into the model through cell proliferation rate of 

the model via energy conservation law. FDG-PET scan was 

employed to provide non-invasive measurement of the 

metabolic rate. To bridge the gap between the model prediction 

and the clinical observation, we introduced intracellular 

volume fraction (ICVF) using dual phase CT scans to link 

them. The patient specific model parameters were estimated by 

minimizing the deviation between the predicted ICVF and the 

measured ICVF with deformation corrected. 

The experiment was conducted on two pancreatic 

neuroendocrine tumors. The average surface distance between 

the predicted tumor and the reference tumor was 2.1 mm and 

2.7 mm, respectively, and the mean square difference of the 

ICVF map was 5.4% and 3.8%, respectively. 

 

Index Terms—Tumor growth, image driven, reaction-

diffusion model, metabolic rate, intracellular volume fraction  

 

1. INTRODUCTION 

Reaction-diffusion systems, originally introduced by Turing 

over 50 years ago [1], play a fundamental role in modeling 

spatial-temporal dynamics in system biology. The reaction-

diffusion model describes the change of the cell population 

using a partial differential equation (PDE).  Recently, this 

model has been adopted to study tumor growth [2] [3] [4]. 

Swanson et al. assumed an infiltrative growth of the tumor 

cells, while considering differences in cell diffusion in white 

and gray matter [4]. Clatz et al. modeled locally anisotropic 

migration patterns by integrating information from diffusion 

tensor images (DTI) [3]. Davatzikos  et al. [2] and Clatz et al. 

[3] included the mechanical properties of the lesion on 

surrounding structures to model mass effect. Ontogenetic 

development is fuelled by metabolism and occurs primarily by 

cell division. West et al. [5] presented a general model for 

ontogenetic growth based on the allometric law and energy 

conservation law. The incoming metabolic energy is allocated 

to two parts: one part for the maintenance of the existing cells 

and the other part for the creation of new cells. This work was 

further extended by Alexander et al. to study the relationship 

between tumor vascularization and growth to metabolic rate 

[6]. In this paper, we derive a quantitative relation between the 

metabolic rate and cell proliferation rate of the reaction-

diffusion model via the energy conservation law, yielding a 

model relating tumor growth and cell metabolic rate and cell 

infiltration. 

To measure the metabolic rate, we used FDG-PET (2-[18F] 

Fluoro-2-deoxyglucose positron emission tomography) due to 

its wide availability in oncology to find regions in the body 

which are more active and need more energy. The energy for 

organism growth is supplied by different metabolic pathways. 

The metabolic energy of the tumor can be approximated by 

that supplied by glycolytic pathway due to the established 

model of the Warburg effect: cancer cells use glycolysis for 

energy production regardless of the availability of oxygen 

because glycolysis produces energy much faster than oxidative 

phosphorylation despite the loss in efficiency [7]. Tracer 

kinetic modeling is a formal way to calculate glucose 

metabolic rate [8]; however,  this modeling approach usually 

requires taking series of blood samples from the studied 

subject to give the time course of the tracer delivery, and 

requires measuring the dynamics of the radiolabel in local 

tissues. Standardized Uptake Value (SUV) is a semi-

quantitative measurement of the metabolic rate and does not 

need dynamic blood sampling and PET scanning, therefore is 

extremely suitable for routine clinical use. In this paper, we 

present the relation between both glucose metabolic rate and 

SUV, and the proliferation rate. 

The reaction-diffusion model describes the change of the 

cell population, which is not directly measurable by the non-

invasive imaging data. To bridge the gap between the model 

and the clinical images, we introduced intracellular volume 

fraction. On the image side, we used dual phase CT images to 

measure the ICVF, and on the model side, we adapted the 

model to predict the ICVF rather than the cell population. 

The patient specific model parameters were estimated by 

minimizing the deviation between the predicted ICVF and the 

measured ICVF. To deal with the deformation between two 

successive longitudinal ICVFs, an additional transformation 

variable was introduced into the parameter estimation 

framework to allow a simultaneous estimation of the 

transformation and the model parameter using an alternating 

optimizer [9]. 
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2. METHOD 

In this section, we first derive a reaction-diffusion model with 

cell metabolic rate incorporated via cell metabolic rate 

conservation law; and then describe how to use FDG-PET to 

measure the metabolic rate and SUV, and how to use dual 

phase CT to measure ICVF; finally, we present an energy 

function to simultaneously estimate unknown model 

parameters and potential deformation.  

 

2.1 Model derivation 
According to the tumor logistical growth law presented in [10], 

the number of the newly created cells can be described by, 

  

  
      

 

 
      (1) 

where   is the number of cells, a function of time  .   is 

spatial-temporal invariant proliferation rate. This law describes 

that the tumor grows exponentially at the beginning and then 

gradually slows down as approaching the carrying capacity  .  

As a tumor progresses, the parts with sufficient nutrient 

grow faster, and the parts suffering vascular inefficiencies will 

develop into necrosis [11], suggesting a heterogeneous spatial-

temporal proliferation function       . The metabolic energy 

conservation law presented by West et al. [5] quantitatively 

describes the relationship between the metabolic energy and 

the tumor growth, providing the theoretical foundation to 

explore the heterogeneity of the proliferation rate. The energy 

conservation law states that the incoming energy      required 

for tumor growth is allocated to two parts,  

        

  

  
 (2) 

where the first term represents the energy to maintain the 

existing cells and the second term represents the energy to 

create new cells.    is the energy each cell required for 

maintenance, and    is the energy required to create a cell. 

Both    and    are constant during tumor growth. Replace  
  

  
 

in equation (2) with      
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(3) 

The proliferation rate   in equation (3) is a function of time t. 

However, in clinical practice,   is only available at specific 

time points, when   and   are measurable. Thus, we 

approximate   at time t between 0 and T with a linear 

interpolation, 
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Apply model (1) to each voxel (millions of cells within     ) 

with position  , and add a diffusion term as that in the 

reaction-diffusion model [1] to account for cancerous cell 

infiltration into surrounding tissues, leading to a reaction-

diffusion model, 

  

  
           

 

 
      (5) 

where the first term is the diffusion term, and the second term 

is the reaction (proliferation) term.   is the diffusivity or 

infiltration rate. Equation (5) describes that the rate of cell 

number change equals the sum of the net dispersal of cancer 

cells and the net proliferation of cancerous cells. Note that both 

 and   are a function of position    and time  .        

depends on metabolic rate maps and ICVF maps at time 0 and 

T, which can be measured by FDG-PET and dual phase CT, 

respectively. 

Because the cell number   is difficult to be directly 

measured by imaging data, we adapt equation (5) by letting 

              , where   is the intracellular volume 

fraction within a voxel, which is observable by dual phase CT 

images to be explained in Section 2.3, 

  

  
              (6) 

where (replace   in (4) with   ) 

       
          

            
 

 

 
 

          

            
 

          

            
  (7) 

where       and      . Position   is omitted in the left 

side. Both parameters   and   have specific biological 

meanings, representing the energy to maintain    cells and 

create   cells, respectively. The proposed model (6) has 

similar format with the reaction-diffusion model used in [2] [3] 

[4], but it differs from them in relating metabolic rate to tumor 

growth and being driven by clinical imaging data. 

To estimate unknown parameters          , we need to 

measure metabolic rate   and intracellular volume fraction  .  

 

2.2 Measure   using FDG-PET 

The formal way to calculate glucose metabolic rate, an 

approximation of metabolic rate B, was originally presented in 

[8], in which the glucose metabolic rate        can be 

precisely calculated by,  

        
   

  

    

     

    (8) 

where LC is a lumped constant that accounts for the transport 

and phosphorylation difference between FDG and glucose, and 

    is the glucose concentration in arterial plasma.       
         (commonly called the uptake constant) can be 

estimated given dynamic FDG-PET scans and blood samples, 

usually not available in routine clinical practice. Normally, 

when the scanning time is longer than 45 min post-injection, 

the uptake constant can be approximated by [12], 

 
    

     

 
      

                      
   (9) 

where        denotes the radioactive tracer FDG
18

 

concentration in tissue at time   that is measurable with PET. k 

(b in [12]) is a constant that is not dependent on the particular 

subject being studied. Replace the uptake constant in (8) with 

(9), 
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   (10) 

where   
   

          
, a lumped unknown parameter. Note that 

the numerator in (10) is widely used as SUV, which is 

proportional to       since both k and LC are constants [12].  

 

2.3 Measure u using pre- and post-contrast CT images 
A tissue within a voxel is considered to be made of three well-

defined regions: (1) a vascular space through which the blood 

flows; (2) an extravascular extracellular space (EES) which 

provides the supporting structure of the tissue; and (3) the 

cellular space. Because iodinated contrast medium is 

constrained in the extracellular volume (ECV, vascular space 

plus EES), and the amount of the contrast within a voxel is 

proportional to the CT enhancement [13], we can calculate the 

extracellular volume fraction (ECVF, the complement of 

ICVF) of the studied voxel by normalizing its enhancement 

with the enhancement of a reference voxel, which only has 

contrast and the concentration is the same as that in the ECV of 

the studied voxel, as shown in equation (11), 

        
                  

                                                 
 (11) 

where the numerator is the enhancement brought by the 

contrast distributed in the ECV of the studied voxel, and the 

denominator  is the enhancement brought by the contrast 

distributed in the whole voxel of the reference voxel. When 

reaching equilibrium, both the numerator and the denominator 

are proportional to the volume of the space.  In fact, there is no 

such kind of voxels with only contrast, but we can use the 

voxel in the blood pool of the heart as the reference voxel as 

[14] since we know the percentages of the plasma and the red 

blood cells in the voxel.                        

                is the enhancement brought by the plasma, 

which accounts for              percentage of the voxel. 

The hematocrit          is the volume percentage (%) of red 

blood cells in blood, which can be measured by the blood 

sample. ECVF’s complement ICVF can be calculated by, 
                 (12) 

Replacing B in equation (7) with         , and measuring   

using equation (12) at time 0 and T, equation (7) changes to, 

       
             

          
 

 

 
 
             

          
 

             

          
  (13) 

where            . Equation (7) is suitable for the 

dynamic FDG-PET scans with   measured by a tracer kinetic 

model, and equation (13) is suitable for static FDG-PET scan 

with SUV as a semi-quantitative measurement of B.        is 

the generalization of spatial-temporal invariant   in equation 

(1), leading to a heterogeneous growth model (6). In equation 

(13), when 
           

          
 

           

          
          for all 

position   and    ,        is reduced to  
              

          
 

(equivalent to constant  ), leading to the homogeneous model 

(1). The benefit using energy conservation law (2) to explore 

the heterogeneity of the proliferation rate lies in the removal of 

the influence of the cell number. For instance, a higher FDG-

PET value heuristically denotes a more aggressive growth. 

But, this aggressiveness can be caused by more less-aggressive 

cells or less more-aggressive cells. Thus, simply weighting the 

proliferation rate with the PET value cannot truly reflect the 

aggressiveness of the growth.  

 

2.4 Parameter estimation 

Problem definition: Given measured SUV:              , 

and measured ICVF:           at time 0 and T, 

simultaneously estimate transform   and model parameters: 

         . 

We introduce transform      in order to track the movement 

of each voxel from time 0 to time T. The unknown parameters 

are estimated by minimizing the mean of the sum of the square 

of the deviation between the measured ICVF         and the 

predicted and deformed ICVF            , 

 

 
∑ ‖                   ‖ 

 
 (14) 

where i is the index of the voxel, and    is the position of the i-

th voxel. M is the number of voxels. The predicted          is 

the solution of the proposed PDE model (6) with proliferation 

rate (13) and the initial condition:         , actually leading 

energy function (14) to a PDE-constrained optimization 

problem. We use backward Euler finite difference method 

(FDM) to get the numerical solution   , and use free-form 

deformation (FFD) to simulate transform  . The two 

physically different parameters         and   are 

estimated by an alternating optimizer [9].   

 

3. RESULTS 
Two patients both with pathologically confirmed pancreatic 

neuroendocrine tumors were enrolled in our experiment with 

their written consent. Patient information is listed in Table 1. 

Fig.1 shows the tumor in the longitudinal post-contrast CT and 

the corresponding ICVF. The parameters for ICVF calculation 

and the range of ICVF are listed in Table 2.  
  

 
 

 
Figure 1. Pancreatic neuroendocrine tumor and ICVF of the first patient. The 

first row shows tumors at baseline (T=0 day), 1st follow-up (T=248 days), and 

2nd follow-up (T=606 days) in the post-contrast CT. The second row shows 

corresponding ICVF. 
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The left part of Fig. 2 shows fused FDG-PET and CT, and the 

measured SUV maps at baseline and the 1
st
 follow-up. 

Corresponding parameters and SUV range are listed in Table 

2. The ICVF and SUV maps at baseline and the 1
st
 follow-up 

are used to estimate the model parameters, and the ICVF at the 

2
nd

 follow-up is used to compare with the predicted ICVF. The 

right part of Fig.2 shows the comparison between the ICVF at 

the 2
nd

 follow-up and the predicted ICVF. 

 
Table 1. Patient information. The scanning time is relative to the baseline 

(T=0) with unit days. 
Id Age Gender Location Grade #Tumor Base 1st 2nd 

1 36 female head 3 1 0 248 606 

2 35 male head/uncinate 3 2 0 365 729 
 

 

     

    
Figure 2. Left: FDG-PET and measured SUV maps of the first patient. The 

first row shows the fused FDG-PET at baseline and the 1st follow-up, and the 

second row shows corresponding measured SUV maps of the segmented 

tumor. Right: the ICVF at the 2nd follow-up (top) and the predicted ICVF 

(bottom). 

 

Fig.3 shows the predicted tumor, which was produced by 

growing the tumor from the 1
st
 follow-up for 358 days with the 

estimated parameters listed in Table 1. When we performed 

prediction, we did not use the FDG-PET at the 2
nd

 follow-up 

and assumed the estimated proliferation rate map to be fixed 

from the 1
st
 follow-up to the 2

nd
 follow-up. 

 
Figure 3. Prediction results of the first patient. Left: the predicted tumor (red) 

and the reference tumor (green, 2nd follow-up). The predicted tumor is the 

isosurface of ICVF 41.5%, which is the average ICVF of the surface of the 

reference tumor. The middle figure shows the isocontour (red) of the predicted 

tumor and the boundary (green) of the reference tumor from the coronal view. 

The right figure is the transversal view. The background images in the middle 

and the right figures are the predicted ICVF cross-sections. 

 

Table 2. Measured ICVF, SUV and prediction evaluation. ICVF: Hct comes 

from blood samples,     is the average enhancement of the voxels located in 

the blood pool. SUV:     is not included in the SUV calculation. Prediction: 

ASD: average surface distance, MSD: mean square difference. Unit: ICVF(%), 

Dose(MBq), Weight(Kg), SUV(g/ml), D(mm2/day), ASD(mm), MSD(%). 

Different colors denote different patients. 

ICVF SUV 
Prediction 

 base 1
st

 2
nd

  base 1
st

 

Hct 0.42 0.41 0.42 Dose 397.38 397.38 
        6.3 

        57.2 

    279 230 252 Weight 73.0 72.0 
D .002 

ASD 2.1 

ICVF [0,81] [0,86] [0,87] SUV [0,14.5] [0,18.4] MSD 5.4 

Hct 0.43 0.43 0.45 Dose 356.31 360.38 
        3.5 

        43.6 

    356 122 268 Weight 74.0 76.8 
D .002 

ASD 2.7 

ICVF [0,58] [0,61] [0,70] SUV [0,6.0] [0,7.8] MSD 3.8 
 

4. CONCLUSIONS 
In this paper, we presented a method to deal with tumor growth 

prediction using multimodality images. On the model side, we 

derived a reaction-diffusion model to incorporate information 

from different aspects such as cell volume fraction and 

metabolic rate. On the image side, we used different modality 

images to measure what the model requires and predicts such 

as using FDG-PET to measure metabolic rate/SUV and using 

dual phase CT to measure ICVF. The preliminary experiment 

on pancreatic neuroendocrine tumors demonstrated the 

promise of the method. 
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