
JOINT RECONSTRUCTION OF COMPRESSIVELY SENSED ULTRASOUND RF ECHOES
BY EXPLOITING TEMPORAL CORRELATIONS

George Tzagkarakis1, Alin Achim2, Panagiotis Tsakalides3 and Jean-Luc Starck1

1 CEA, DSM/SEDI/LCS, Centre de Saclay, F-91191 Gif-Sur-Yvette cedex, France
2 Visual Information Lab, University of Bristol, UK

3 Dept. of Computer Science, University of Crete & Institute of Computer Science - FORTH, Greece
e-mail: {georgios.tzagkarakis, jstarck}@cea.fr, Alin.Achim@bristol.ac.uk, tsakalid@ics.forth.gr

ABSTRACT

In this paper, the principles of compressive sensing are exploited for
the joint reconstruction of an ensemble of biomedical ultrasound RF
echoes, using a highly reduced set of random measurements. Tem-
poral correlations between the distinct RF echoes are taken into ac-
count during the reconstruction, which results in a reduction of the
required number of measurements, while also increasing the recon-
struction quality. The efficiency of recent state-of-the-art methods is
evaluated on a set of real ultrasound data, to highlight the importance
of accounting for temporal correlations during reconstruction. Our
experimental evaluation reveals an improved performance, both vi-
sually and in terms of quality metrics, such as the SSIM and PSNR,
when such correlations are extracted during the joint reconstruction
of RF echoes, compared with previous methods based on the sepa-
rate recovery of each RF echo.

Index Terms— Compressive sensing, joint signal reconstruc-
tion, structured sparsity, ultrasound RF echoes.

1. INTRODUCTION

Ultrasound imaging is among the most widely used cross-sectional
medical imaging modalities, mainly because ultrasound has a num-
ber of potential advantages, which foster its popularity over other
medical imaging techniques. Specifically, ultrasound imaging sys-
tems are non-invasive, versatile, they do not use ionizing radiation,
and they can be embedded in relatively low-cost portable devices,
which operate in real time. However, this real-time nature may be
limited by the available acquisition time, or the high volume of the
acquired data. Moreover, introduction of new technologies, such as
4D ultrasound, entailing orders of magnitude greater requirements
for data transfer, processing, and storage, imposes even greater con-
straints necessitating the design of efficient data reduction methods.

The general principle of ultrasound image formation involves
the transmission of a train of pulses from an array of transducers
towards the plane being scanned. The returning echoes are then
processed in order to generate an image that displays their location
and amplitude. Image compression is necessary in order to reduce
the data volume, especially in case of portable ultrasound systems
with limited processing, memory, and bandwidth resources, and to
achieve a low bit rate, ideally without any perceived loss of image
quality. The need for transmission bandwidth and storage capacity in
the digital radiology environment, especially in telemedicine appli-
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cations, and the continuous diversification of ultrasound applications
keep placing new limitations on the capabilities of existing systems.

In this work, the principles of compressive sensing (CS) [1, 2]
are exploited to overcome the limitations of traditional ultrasound
imaging systems, while providing a more general framework for ul-
trasound image analysis and extraction of meaningful information.
In particular, the original full-resolution ultrasound data are mapped
in a much lower-dimensional space, namely, the space of random
incoherent measurements. Our goal then is to recover the original
ultrasound image given this highly reduced set of measurements.

In a recent work [3], we introduced a novel framework for CS of
biomedical ultrasonic signals based on modeling data with symmet-
ric alpha-stable distributions. Then, we proposed an `p norm-based
minimization approach that employed the iteratively reweighted
least squares (IRLS) algorithm, but in which the parameter p was
judiciously chosen by relating it to the characteristic exponent of
the underlying alpha-stable distributed data. The results showed a
significant increase of the reconstruction quality when compared
with previous `1 minimization algorithms. The effect of the ran-
dom sampling pattern on the reconstruction quality, when working
in the frequency domain (k-space) was studied in [4], which was
then exploited in [5] for the design of a Bayesian CS algorithm,
whose main benefit is that it does not require any hyperparameter
adjustment and allows the sparsity level in the Fourier domain to
be estimated. However, none of these studies takes into account
potential temporal correlations between RF echoes.

Sparse Bayesian learning (SBL) is an important class of Bayesian
algorithms. A recent study [6], first introduced SBL for sparse signal
recovery using multiple measurement vectors (MSBL), which was
then extended in [7] in a block SBL framework accounting for tem-
poral correlations between the individual source signals (T-MSBL).

In this work, we exploit the capability of T-MSBL to extract
such correlations on real ultrasound data, resulting in a reduction of
the required number of measurements, while attaining an increased
reconstruction quality. This method is applied in the time-domain
directly, based on the observation that the recorded RF echoes are
sparse by themselves, meaning that the effective support consists of
only a few high-amplitude values corresponding to pulses reflected
from “objects” placed at specific distances from the transducer.

The rest of the paper is organized as follows: Section 2 intro-
duces the sampling process for the simultaneous sensing and com-
pression of the time-domain RF echoes. Section 3 describes the joint
reconstruction of the original ultrasound signals by considering tem-
poral correlations, while Section 4 presents an experimental evalua-
tion and comparison with previous methods using real data. Finally,
Section 5 concludes, and gives directions for further improvements.



2. SAMPLING AND COMPRESSION OF RF ECHOES

CS is concerned with simultaneously sampling and compressing sig-
nals in a more parsimonious fashion, acquiring only the relevant
information, rather than first sampling and then compressing sepa-
rately. The core concept of this theory is that, given an exactly sparse
or compressible signal, a highly reduced set of linear random projec-
tions contains all the sufficient information to perform the processing
of interest, such as, reconstruction, detection, or classification.

In terms of signal approximation, it has been demonstrated [1, 2]
that if a signal of length N is K-sparse in an appropriate dictio-
nary or transform basis, then it can be recovered with high probabil-
ity from M = O

(
K log N

K

)
non-adaptive linear projections onto a

measurement basis, which is sufficiently incoherent with the sparsi-
fying dictionary or transform basis. Common choices of measure-
ment bases satisfying this condition, are random matrices with inde-
pendent, identically distributed (i.i.d.) Gaussian or Bernoulli entries.

In the following, let X ∈ RN×S denote an ultrasound image,
which can be considered as an ensemble of S distinct RF echoes of
lengthN , Xi ∈ RN , i = 1, . . . , S. Then, a vector ofM compressed
measurements is generated for the i-th RF echo as follows:

yi = ΦiXi , (1)

where Φi ∈ RM×N , with M < N , is the measurement matrix.
Although, in general, a different measurement matrix can be used
for each RF echo, for simplicity we consider that the same matrix
is used to acquire all the compressed RF echoes, that is, Φi ≡ Φ,
i = 1, . . . , S. By doing this, a set of compressed measurements is
generated directly for the whole ensemble of the one-dimensional
(1D) RF echoes as follows:

Y = ΦX , (2)

where Y ∈ RM×S is the matrix of random measurements.
Then, the problem to be solved is stated as follows: Given the

low-dimensional matrix of random measurements Y for the ensem-
ble of 1D RF echoes, along with the measurement matrix Φ, perform
a joint reconstruction of the original high-resolution ultrasound data
X by exploiting potential temporal correlations between the individ-
ual RF echoes (columns of X).

3. JOINT RECONSTRUCTION OF RF ECHOES
EXPLOITING TEMPORAL CORRELATIONS

The formulation given by (2) is equivalent to a multiple measure-
ment vectors (MMV) problem, with temporal correlations between
the elements in each non-zero, or “dominant”, row of X. By “dom-
inant” we refer to those rows of X consisting of the high-amplitude
elements, similarly to the notion of compressibility. Previous algo-
rithms did not consider such temporal correlations, which is espe-
cially the case with norm-based optimization methods, where the
incorporation of temporal correlations is not straightforward.

In [7], the proposed algorithm models and exploits temporal cor-
relations between sources, under a Gaussian assumption for the sig-
nal and noise terms. In the following, we summarize the main com-
ponents of the temporally correlated, MMV-based SBL (T-MSBL)
algorithm introduced in [7], and how these are related to the ultra-
sound RF data of interest.

The algorithm considers the general noisy measurement model,

Y = ΦX + V , (3)

where V ∈ RM×S is the noise term consisting of i.i.d. elements.
T-MSBL is based on a Gaussian assumption for both the signal (X)

and noise (V) components. More specifically, each source, that is,
1D RF echo, is modeled by a Gaussian density,

fX(Xi) ∼ N (0, γiΣi) , i = 1, . . . , S (4)

where γi ≥ 0 is a hyperparameter controlling the degree of spar-
sity of the i-th RF echo. More specifically, when γi = 0, the cor-
responding Xi is an all-zeros vector. Moreover, Σi is a positive
definite matrix, which captures the inherent correlation structure of
Xi. Similarly, the elements of the noise matrix are realizations of
a Gaussian density, fV (v) ∼ N (0, σ), where σ is the noise vari-
ance. The use of distinct matrices Σi 6= Σj , i 6= j, for different RF
echoes entails the drawback of overfitting due to potentially limited
data and many parameters to be estimated. A way to overcome this
problem is to use a unique matrix Σi ≡ Σ, ∀i = 1, . . . , S, to model
the correlations of all the RF echoes up to a non-negative scalar γi.

Following a maximum a posteriori (MAP) estimation methodol-
ogy, the jointly reconstructed ensemble of RF echoes is simply the
mean of the posterior distribution of X, which is also a Gaussian.
In each step of T-MSBL, the parameters to be updated are the hy-
perparameters {γi}Si=1, the matrix Σ, and the noise variance σ. The
model parameters of the posterior Gaussian distribution, along with
the updating rules for the above parameters are as follows (where
the superscript t is used to denote the current estimate of a given
variable, and t− 1 its estimate in the previous iteration):

Σt
x =

(
(Γt−1)−1 +

1

σt−1
ΦTΦ

)−1 (5)

Xt = Γt−1ΦT (σt−1I + ΦΓt−1ΦT )−1
Y (6)

γt
i =

1

N
Xt

i(Σ
t−1)−1Xt T

i + (Σt
x)ii , ∀ i = 1, . . . , S (7)

Σ̂t =

S∑
i=1

Xt T
i Xt

i

γt
i

+ ηI (8)

Σt =
Σ̂t

‖Σ̂t‖F
(9)

σt =
1

MN
‖Y −ΦXt‖2F + (10)

σt

M
Tr[ΦΓtΦT (σtI + ΦΓtΦT )−1] , (11)

where Γ = diag(γ1, . . . , γS), η > 0 is a regularization parameter,
which is used especially in low and medium SNR cases to increase
the robustness due to estimation errors of γi and Xi, and ‖ · ‖F
denotes the Frobenius norm of a matrix. The algorithm terminates
when a predefined maximum number of iterations, Tmax is reached,
or the reconstruction error between two consecutive iterations falls
below a threshold, maxm,n(Xt

m,n −Xt−1
m,n) < ε (where Xm,n de-

notes the element of X in row m and column n).

4. EXPERIMENTAL EVALUATION

In this section, the performance of reconstructing jointly an RF
echoes ensemble by accounting for temporal correlations is evalu-
ated for T-MSBL, and compared with recent CS methods which do
not exploit explicitly temporal correlations. More specifically, all
the methods are tested on a set of three real ultrasound images of
phantoms, shown in Fig. 1, with each image being sampled and com-
pressed simultaneously using a measurement matrix Φ generated as
the orthonormal basis of a Gaussian matrix G. The orthonormal-
ization simply ensures that ΦTΦ = I, which makes the numerical
implementation more robust by avoiding the lack of an exact inverse



Fig. 1. Real ultrasound images used in the experimental evaluation.

matrix, while maintaining the same column space with the original
random matrix G.

The ultrasound images used consist of 256 1D RF echoes, each
one of size N = 1032. The number of compressed measurements,
M , varies as a percentage of the full dimension, M = ρ · N , with
ρ ∈ {0.10, 0.20, 0.30, 0.40}. T-MSBL initializes with Γ0 = I,
σ0 = 10−3, and terminates for Tmax = 2000. The threshold ε =
10−6, and the regularization parameter η = 2. The performance
achieved by T-MSBL is compared against the following algorithms:

i) IRLS-prior: the 1D RF echoes are reconstructed separately
using an iterative re-weighted least squares (IRLS) algorithm
with prior information [8]. An initial “guess” of the effec-
tive sparse support is used as prior information, which corre-
sponds to the indices of the K highest amplitude elements of
each RF echo. Although this choice corresponds to an ideal-
case scenario, where the full-resolution RF echoes have been
recorded and the true support is known, it will be used as a
benchmark to compare with. In the subsequent evaluation we
set K = round(c ·N) with c = 10%.

ii) OMP: each 1D RF echo is reconstructed using the orthogonal
matching pursuit algorithm [9].

iii) SαS-IRLS: each RF echo is recovered using our probabilis-
tic algorithm introduced in [3], an `2p re-weighted method
which is based on modeling the RF echoes using symmetric
alpha-stable distributions.

iv) ISAL1: each RF echo is reconstructed separately using a re-
cent infeasible-point subgradient algorithm for `1- minimiza-
tion [10], which is faster and more accurate when compared
with several of the previous `1-based methods.

An analysis of the results is undertaken in terms of reconstruction
quality, which is measured by means of the structural similarity in-
dex (SSIM) [11] and peak signal-to-noise ratio (PSNR) of the re-
constructed echoes ensemble compared with the original ensemble.
SSIM resembles more closely the human visual perception, and as
such, it is often preferred than the commonly used PSNR. For a given
image I and its reconstruction Î the SSIM is defined by:

SSIM =
(2µIµÎ + c1)(2σÎI + c2)

(µ2
I + µ2

Î
+ c1)(σ2

I + σ2
Î

+ c2)
, (12)

where µI, σI are the mean and standard deviation of I (similarly
for Î), σÎI denotes the correlation coefficient of the two images, and

c1, c2 stabilize the division with a weak denominator. In particular,
when SSIM equals 0 the two images are completely distinct, while
when the two images are matched perfectly SSIM is equal to 1.

Table 1 shows both the SSIM and the PSNR (in parentheses) be-
tween the original RF images and their reconstructions using IRLS-
prior, OMP, SαS-IRLS, ISAL1, and T-MSBL, for a varying sam-
pling rate. As it can be seen, for all the ultrasound images the best
performance, excluding the ideal scenario of IRLS-prior, is observed
for T-MSBL, verifying the importance of taking into account the
presence of temporal correlations. As we mentioned before, the re-
sults for IRLS-prior are given as a benchmark to compare with, since
in practice the partial or the exact prior knowledge of the true sparse
support will be unavailable, especially if the RF echoes are recorded
directly in the compressed measurements domain. Despite this fact,
we observe that there exist cases (e.g., reconstruction results for RF
image 2), where T-MSBL outperforms IRLS-prior even without any
prior knowledge of the original sparse support.

Moreover, as expected, the reconstruction quality of all methods
increases by increasing the sampling rate. Focusing on T-MSBL,
there are cases, such as for RF images 1 and 3, where T-MSBL is
outperformed slightly by other methods when the sampling rate is
fixed at 10%. This is simply because the accuracy in estimating the
covariance matrices, and subsequently, the hyperparameters {γi}Si=1

(cf. (5)-(11)) affecting the performance of T-MSBL, decreases as the
sampling rate is reduced. As an overall conclusion, we observe that
by exploiting temporal correlations we are able to lower the amount
of information needed to achieve the same, or even an improved,
reconstruction quality without any prior knowledge of the jointly
sparse support.

In addition, a comparison between the SSIM and PSNR values
of Table 1, and the ultrasound images shown in Fig. 1, reveals the
inefficiency of OMP-based approaches in reconstructing more com-
plex ultrasound images. By “complex”, we mean images presenting
also noise-like features, apart from the dominant structures, as is the
case for RF images 1 and 3, for which OMP achieves inferior perfor-
mance when compared with the other methods. On the other hand,
SαS-IRLS is faring particularly good by comparison, while the re-
cently introduced ISAL1 algorithm gives similarly faithful results.

For a qualitative analysis, Fig. 2 shows a patch from the origi-
nal ultrasound RF image 1, along with its reconstructions using the
above five methods, for a sampling rate of 40%. Visually, we ob-
serve that IRLS-prior and T-MSBL appear to be the best. This be-
havior is not surprising for IRLS-prior, since it employs prior knowl-
edge of the original sparse support. As such, less distortion is intro-
duced to the areas corresponding to the indices which do not belong
to this initial support. However, this will not be the case in a practical
scenario, where we would be interested in reconstructing RF images
from their compressed measurements directly, without having access
to the original RF echoes. Moreover, OMP and ISAL1 reconstruc-
tions introduce some noise in areas where the original patch is clear
(e.g., top part of the patch), while SαS-IRLS reconstruction intro-
duces some noise in areas of high signal energy. In any case, the
visual inspection is in agreement with the SSIM and PSNR values
obtained (cf. Table 1), indicating the importance of accounting for
temporal correlations between the RF echoes during reconstruction,
as it is done by T-MSBL.

5. CONCLUSIONS AND FURTHER EXTENSIONS

In this work, we tackled the problem of joint reconstruction of an
ensemble of RF echoes, by exploiting the presence of temporal cor-
relations. We showed, through experimentation with real ultrasound
data, and comparison with recent state-of-the-art reconstruction



RF image M
N

%
Method

IRLS-prior OMP SαS-IRLS ISAL1 T-MSBL

1

10 0.884 0.724 0.866 0.833 0.850
(37.40) (32.40) (35.08) (35.21) (35.37)

20 0.896 0.739 0.868 0.857 0.871
(38.20) (33.99) (35.62) (36.87) (36.80)

30 0.906 0.764 0.875 0.880 0.893
(38.88) (35.15) (36.21) (38.18) (38.20)

40 0.917 0.794 0.884 0.902 0.914
(39.59) (36.07) (36.85) (39.37) (39.44)

2

10 0.993 0.982 0.990 0.991 0.992
(53.01) (47.65) (48.83) (50.33) (50.60)

20 0.995 0.995 0.990 0.994 0.996
(53.83) (50.43) (49.36) (53.07) (53.63)

30 0.996 0.994 0.992 0.996 0.997
(54.52) (52.81) (49.92) (55.31) (55.98)

40 0.996 0.995 0.992 0.995 0.998
(55.32) (54.34) (50.62) (57.17) (56.92)

3

10 0.954 0.874 0.939 0.931 0.933
(42.26) (37.35) (38.49) (39.75) (39.63)

20 0.959 0.889 0.938 0.944 0.946
(43.05) (39.17) (39.06) (41.82) (41.90)

30 0.963 0.907 0.939 0.956 0.957
(43.70) (40.52) (39.62) (43.51) (43.70)

40 0.967 0.921 0.942 0.964 0.966
(44.47) (41.53) (40.26) (44.69) (44.79)

Table 1. Comparison of methods for reconstructing RF echoes en-
sembles with sampling rate M

N
∈ {10%, 20%, 30%, 40%}. Val-

ues are the SSIM between the original and reconstructed ensembles,
along with the corresponding PSNR (in dB) given in parentheses.
The higher SSIM and PSNR values, the better the reconstruction.

methods, that the extraction of such correlations, and subsequently
the joint recovery of the 1D RF echoes, enhanced the reconstruction
quality over CS algorithms, which recover each echo separately.

However, the standard T-MSBL algorithm is designed under a
Gaussian assumption for the signal and noise components. Our pre-
vious work [3] showed that RF echoes can be modeled accurately
using symmetric alpha-stable densities. Thus, the extension of T-
MSBL by incorporating alpha-stable models could improve the re-
construction quality. A further extension, which is also of high inter-
est, concerns the case of 3D ultrasound data, and more specifically,
the design of a framework for object detection, by extracting not
only temporal correlations within the same image, but also across
different images of the same 3D RF volume.
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