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ABSTRACT 

 

The detection and segmentation of ovarian cancer 

metastases have potentially great clinical impact on 

women’s healthcare. We recently developed a tumor 

sensitive matching flow (TSMF) technique to locate 

metastases by juxtaposing the roles of matching and 

classification within a PDE framework. This paper further 

augments the TSMF approach by integrating 1) shape index 

to measure metastasis-caused deformation, 2) Gaussian 

mixture model to describe metastasis intensity distribution, 

3) total variation (TV) flow to enhance metastasis regions, 

and 4) TSMF vector displacements to control the amount of 

level-set propagation. The method was validated on 

contrast-enhanced CT data from 30 patients, of which 15 

have 37 metastases in total. The true positive rate was 87% 

compared to 76% in our earlier work. Moreover, the false 

positive rate per patients was dropped to 1.1 from 4.2 in our 

earlier work. The metastasis segmentation achieved a Dice 

coefficient of 80.0±7.2%. All these experimental results 

demonstrated that shape index, Gaussian mixture model, TV 

flow, and TSMF-constrained level set propagation 

substantially improve the accuracy of metastasis detection 

and segmentation.   

 

Index Terms— Ovarian cancer metastases, tumor 

sensitive matching flow, tumor segmentation 

 

1. INTRODUCTION 

 

Ovarian cancer is a deadly disease, in large measure because 

it metastasizes frequently, in as many as 75% of women in 

one study [1]. Detecting and segmenting ovarian cancer 

metastases have potentially great impact on improving the 

prognosis and treatment of women with ovarian cancer.  

The Random distribution and weak boundaries of 

metastases introduce substantial challenges to their detection 

and segmentation. Machine learning techniques are 

commonly used to establish CAD systems for CT image 

detection of tumors within human organs [2,3,4,12]. 

However, we focus on detecting metastases external to and 

attached to organs. We propose a detection algorithm with 

minimum need for training to avoid time-consuming 

collection of training data. Metastases can be alternatively 

located by comparing patient images to atlas images from 

healthy individuals because metastases often cause organs to 

deform. For this purpose, optical flow methods are known to 

measure visual motion or shape variance between two 

images [5,6]. Unfortunately, these flow field methods fail to 

reliably find metastases because individual differences 

dominate the shape variation.  

We recently developed a tumor sensitive matching flow 

(TSMF) technique to detect metastases [7]. The key 

contribution was the integration of a metastasis-likelihood 

function into a PDE-based shape comparison framework. 

The likelihood function evaluated the existence of 

metastases in local image regions and artificially controlled 

the flow computation. TSMF highlights metastasis regions 

in the flow field while dampening all other variance. 

Metastases can thus be detected and segmented by searching 

large TSMF vectors.  

This paper improves the TSMF approach by 

incorporating shape index and Gaussian mixture models. 

The augmented TSMF is more sensitive to metastases and 

enhances the accuracy of detection.  We also use total 

variation (TV) flow [8] to diffuse image regions with 

metastases while preserving their boundaries in order to 

alleviate the over-segmentation issue. Moreover, a level set 

algorithm used to segment metastases is optimally 

controlled by the displacements of TSMF vectors. The 

validation on datasets from 30 patients demonstrated that the 

augmented TSMF algorithm significantly improved the 

accuracy of ovarian cancer metastasis detection and 

segmentation.  

 

2. METHODOLOGY 

 

Our ovarian cancer metastasis detection and segmentation 

consists of shape descriptor construction, TSMF 

computation, seed point determination, and metastasis 

segmentation, as illustrated in Fig. 1. This section will 

particularly elaborate on the enhancements to this detection 

framework. Some of the implementation details are 

presented in our earlier work [7].  
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               (a)                                           (b) 

 
                      (c)                                           (d) 

Figure 1: Process of ovarian cancer metastasis detection and 

segmentation. (a) Patient organ and registered atlas from 

shape descriptor construction (overlaid), (b) TSMF field 

where blue to red represents small to large flow vectors, (c) 

seed point determined from TSMF field, and (d) the 

segmented metastasis in red. 
 

2.1. Shape descriptor construction 

 

This step first registers a reference CT image to the current 

patient image (Ip) and generates a registered reference image 

(Ia). The image pair, Ip and Ia, is used to measure the 

intensity difference between the current patient and the 

healthy individual. The liver and spleen are then 

automatically segmented from the patient image using the 

method in [13]. Image registration is again performed 

between a probabilistic atlas and the segmented organs, as 

shown in Fig. 1(a), followed by distance transforms [9]. We 

obtain another image pair, organ distance field (Dp) and 

atlas distance field (Da), serving for shape description. 

 

2.2. Tumor sensitive matching flow (TSMF) computation 

 

TSMF aims to measure the shape variance between the 

patient organ and the atlas to identify metastases. 

Embedding the two image pairs obtained from the previous 

step into a PDE framework leads to 
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L1 norm. ),,( zyxC  is a metastasis-likelihood function for 

evaluating  metastasis existence at point ),,( zyx , which is 

the key factor that enables TSMF (computed from Eq. 1) to 

find metastases.  

 
(a)                                        (b) 

Figure 3: Intensity distribution of the metastasis.  

 

      The definition of ),,( zyxC  
is based on the observation 

that the metastasis intensity distribution is similar to a 

Gaussian function (see Fig. 3), and the motivation that we 

detect external metastases attached to organs. We assume 

m
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and 

m
  to be the mean and standard deviation of the CT 

attenuation (voxel intensities) of the metastasis. ),,( zyxC is 

a pieceswise function and given by 
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where   and   are the segmented organs and non-organ 

regions in the patient image, and   is the organ boundary. 

Dmax is the largest distance value in the patient distance 

field, and 
 
and   are the mean intensity and standard 

deviation of adjacent voxels in  . Eq. 2 indicates that the 

likelihood of the metastasis existence remains a small value 

in the non-organ regions and also decreases inside the organ. 

The likelihood significantly increases if the local organ 

boundary has large shape change (measured by the 

numerator) or the intensity values within the metastasis are 

more homogeneous (denominator).  

        Using the Euler-Lagrange equation to minimize Eq. 1 

yields TSMF, and TSMF vectors are magnified at metastasis 

regions thanks to ),,( zyxC .
 

Metastases can thus be 

identified by searching for large TSMF vectors. However, 

the numerator in Eq. 2 fails to reliably classify the cup shape 

caused by metastases and produces many false positives, as 

illustrated in the third row of Fig. 4. In addition, a single 

Gaussian function is insufficient to describe wide metastasis 

intensity ranges. To address these issues, we study shape 

index and Gaussian mixture models to improve ),,( zyxC . 

Shape Index. Letting 
21

   be the principal 

curvatures of the organ surface, the shape index [10] is 

defined as 
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Fig.2 illustrates the shape index 

mapped on the liver surface. 

Blue to red colors represent 

small to large shape index 

values. We are interested in cup 

shapes on the liver surface 

because metastases often push 

against the organ causing 

deformation. Shape index in Fig. 2 accurately tracks 

metastasis areas because their blue regions correspond to 

cup shapes. Therefore, shape index is a discriminative 

feature to enhance ),,( zyxC . 

       Gaussian mixture model. In order to reduce individual 

variability, we choose six representative metastases from six 

patients not used in our validation experiments to compute a 

Gaussian mixture model for describing the intensity 

distribution of the metastasis, which is defined as  
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where 
i

  and 
i

  are the mean intensity and standard 

deviation of i-th representative metastasis.  

      Exploiting the shape index and Gaussian mixture 

model, the center equation of ),,( zyxC in Eq. 2 is 

reformulated as 
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Here, 1
i

w in our implementation. Note that the shape 

index term is placed in the denominator since small shape 

index values correspond to the cup shape caused by 

metastases. The other two terms in the denominator measure 

the homogeneity and intensity difference between the 

metastasis and the current image region. ),,( zyxC  yields 

large values if the current image region contains metastases. 

Otherwise, it will suppress the TSMF flow.  

       Finally, TSMF is augmented by using the enhanced 

),,( zyxC  and minimized by the Euler-Lagrange equation.  

Fig. 1(b) shows the augmented TSMF result, where the 

metastasis regions are highlighted by large TSMF vectors.  

 

2.3. Metastasis segmentation 

 

Metastasis segmentation involves two main steps, seed point 

determination and fast-matching segmentation.  

      Seed point determination starts with establishing 

connection graphs on the organ surface. TSMF vectors can 

measure metastasis-caused shape variance among organ 

surface. Surface points with TSMF vector magnitude larger 

than 10mm are selected as we are only interested in 

detecting metastases larger than 10mm. Each connection 

graph is then subdivided into small subgraphs. Each 

subgraph has approximately 100 vertices (10mm×10mm 

area) in order to detect metastases larger than 10mm. 

Finally, the center point of each sub-graph is chosen as the 

seed point, as shown in Fig. 1(c). 

      Total-variation (TV) flow [8] is used to remove 

heterogeneity in the metastasis while preserving image 

boundaries. Seed points are imported into the fast-matching 

algorithm [11]. To control over-segmentation, we set the 

iteration number as u


5.2  because TSMF vectors indicate 

local deformation caused by metastases. Finally, the 

metastasis is segmented as depicted in Fig. 1(d). 

 

2.4. Validation dataset 

 

The augmented TSMF algorithm was validated on 

abdominal contrast-enhanced CT images from 30 patients. 

15 patients had at least one metastasis, and the total number 

of metastases was 37. They were all labeled by an 

experienced radiologist and used as the ground-truth. Thirty-

two of them were attached to liver, and the remaining four 

to the spleen. Their size range was 4.0-49.9mm. The CT 

image slice thickness range was 2.0-2.5mm. Retrospective 

analyses of these images were approved by our Institutional 

Review Board.  

       We chose true positive (TP) rate and false positive (FP) 

per patient to evaluate the accuracy of the metastasis 

detection. We also employed the Dice coefficient (DC) to 

measure segmentation accuracy.  

 

3. EXPRIMENTAL RESULTS 

 

The true positive rate of the augmented TSMF was 87% 

and the false positive per patient was 1.1, while they were 

76% and 4.2 by using our previous approach [7]. Note that 

three metastases were due to small size (less than 10mm) 

and the remaining two because of minor deformation. 

Metastases larger than 10mm are important as they are 

clinically useful for the follow-up treatment. The average 

Dice coefficient of the segmented tumors was 80.0+/-7.2% 

with augmented TSMF, while it was 62.0+/-6.1% with the 

original TSMF. 

       Fig. 4 compares metastasis detection on four patients by 

using original and augmented TSMF.  The first patient had 

three metastases. Metastasis (A) was missed in both 

methods because it was floating close to the liver. 

Metastasis (B) was missed in the original approach, but 

detected by the augmented TSMF because the augmented 

TSMF is equipped with the shape index and Gaussian 

mixture model to accurately determine the existence of 

metastases in local image regions. Moreover, metastasis (C) 

was over-segmented by the original TSMF while it was 

similar to the annotated correspondence using the 

augmented TSMF. The patient in the second column had 

five metastases including one attached to the spleen, labeled 

(E). The original TSMF missed (E) and produced a couple 

of false positives near the liver. The augmented TSMF 

Figure 2: Shape index 

on the liver surface. 
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detected all metastases, with only one false positive. In 

addition, metastasis (D) is more accurately segmented by 

the augmented TSMF. The two patients in the third and 

fourth columns had no metastases. The original TSMF 

generated multiple false positives at image regions (F-I), 

while the augmented TSMF only produced one. The false 

positive (F) is on the gallbladder, which is a typical false 

positive because the gallbladder has similar intensity to 

some low attenuation metastases.  

        

 

 

 

 

 
Figure 4: Comparison of segmented metastases on four 

patients using original and augmented TSMF. Two patients 

with metastases are illustrated in the left two columns, and 

two patients without metastases in the right two columns. 

First row: Ground-truth metastases (red) attached to liver 

(green) or spleen (brown). They are void in the patients 

without metastases; Second row: original TSMF; Third 

row: segmented metastases from original TSMF, where true 

detections are shown in red and false detections in yellow; 

Fourth row: augmented TSMF; Fifth row: segmented 

metastases from augmented TSMF.  

 

4. CONCLUSIONS 
 

In this work, we augmented the PDE framework of tumor 

sensitive matching flow for ovarian cancer metastasis 

detection and segmentation by embedding 1) shape index, 2) 

Gaussian mixture model, 3) total variation flow, and 4) 

TSMF-constrained level set propagation. The integration of 

shape index and Gaussian mixture model better describes 

the likelihood of metastasis existence in the current image 

region, and TV-flow and TSMF-constrained metastasis 

segmentation help to reduce metastasis over-segmentation. 

       The augmented approach was validated on 30 patients, 

with a total of 37 metastases. The augmented TSMF 

improved the true positive rate from 76.0% to 87.0%, while 

dropping the false positive per patient from 4.2 to 1.1. The 

average Dice coefficient of the segmented tumors was also 

enhanced from 62.0% to 80.0%.  Results demonstrated that 

the augmented TSMF approach was more effective for 

metastasis detection and segmentation.    
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