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ABSTRACT

We introduce a novel variational framework for the regularized re-
construction of time-resolved volumetric flow fields. Our objec-
tive functional takes the physical characteristics of the underlying
flow into account in both the spatial and the temporal domains. For
an efficient minimization of the objective functional, we apply a
proximal-splitting algorithm and perform parallel computations. To
demonstrate the utility of our variational method, we first denoise a
simulated flow-field in the human aorta and show that our method out-
performs spatial-only regularization in terms of signal-to-noise ratio
(SNR). We then apply the scheme to a real 3D+time phase-contrast
MRI dataset and obtain high-quality visualizations.

Index Terms— Spatio-temporal regularization, flow fields, vec-
tor fields, 4D flow MRI, flow-sensitive MRI, phase-contrast MRI,
denoising, proximal splitting, curl, divergence, invariance.

1. INTRODUCTION

Recent methodological improvements in phase-contrast (PC) MRI
enable the acquisition of time-dependent blood flow with full vol-
umetric coverage [1]. In a noninvasive manner, PC MRI is able to
measure the blood flow in a specific vascular region of interest. This
makes PC MRI (also termed flow-sensitive MRI) highly suitable
for designing diagnostic and treatment strategies for cardiovascular
diseases [2]. For instance, PC MRI measurements can be used to
assess the generation of complex flow phenomena and unfavorable
shear stress along the aged or diseased central arteries. These data
acquired in vivo can be also combined with 1D or 3D computational
fluid dynamics to develop methods for evaluating surgical outcomes
in the aorta [3]. As for all MR recordings, the quality of PC MRI
measurements are degraded by noise. This degradation becomes
more severe if the acquisition time is shortened, which is however
desirable for increased temporal resolution. Several other sources of
error such as background phase contributions from eddy-currents or
velocity aliasing can also distort flow maps [1]. Furthermore, a priori
known physical properties of the flow are not automatically enforced
in the raw, noisy acquisitions.

Following these reasonings, we shall consider a variational
method that takes the form of the optimization problem

£ — argmin  D(F; R (F), 1
argmin (,Y)Jr; (f) (1)

where the data fidelity term D keeps the reconstructed field £* close
to the measured flow y and where each regularization functional (or
regularizer) R; imposes certain characteristics on £*.
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When specifying such an algorithm, a guiding principle is to
impose physically sound constraints on the solution. In particular,
it is highly desirable that the solution remains invariant to certain
coordinate transformations such as translation, rotation, and scaling.
The curl and divergence operators are particularly well-suited for
that purpose. They have been used by different authors for flow-field
regularization. For instance, Suter and Chen [4] and Arigovindan et
al. [5] have considered them in the context of quadratic (L2) regu-
larization. Tafti and Unser [6] and Tafti et al. [7] have showed that
the discontinuities at the flow boundaries are better preserved by
switching from an L-norm to an L;-norm regularization.

While the said formulations are capable of imposing valid con-
straints on the solution, they are fundamentally limited to spatial
regularization of 2D and/or 3D flows. They are not truly suited for
dynamic-flow imaging applications. In the present paper, based on
our previous approaches on flow-field reconstruction [6, 7, 8], we in-
troduce a variational method for time-dependent volumetric flow-field
data.

The main contributions of this work are:

m The formulation of a spatio-temporal regularization method
that is appropriate to the tasks of denoising and enhancement
of 3D+time flow-fields. Our method involves curl and diver-
gence operators for the spatial regularization and assumes that
the underlying flow is varying smoothly in time.

m The derivation of a reconstruction algorithm, based on
proximal-splitting, that decomposes the optimization into
sub-problems that are solved in parallel.

m The application of the resulting scheme to the problem of
flow-field denoising and visual enhancement. We show that
our algorithm achieves better denoising performance than its
spatial-only counterpart. We further apply the method to a
real PC MRI data of blood flow in the human aorta and obtain
improved pathline visualization of the flow.

2. VARTATIONAL MODEL

A time-dependent volumetric flow-field is represented by the vector
function f(s,t) = (fi(s,t), f2(s,t), f3(s,t)) over some bounded
spatio-temporal domain Qs x ; C R®* x R; s € Qs denotes the
spatial coordinates and ¢ € €); the temporal one.

2.1. Continuous-Domain Formulation

In the continuous setting, the generic form of the regularization func-
tional is given by

RE) = A /R /nzz O(R{E) (s, 1)) dsdr, o)



where R is the regularization operator (scalar- or vector-valued),
¢ : RY — Ris a potential function (N depends on the codomain of
R{f}), and A > 0 is the regularization parameter.

As for the choice of suitable spatial regularization operators, we
shall rely on first-order differential operators such as div and curl
as justified by Proposition 1 below. Considering the short transition
space between the artery walls, we choose ¢(-) = | - | denoting the
absolute value or the magnitude depending on its argument. This
potential function has been shown to be well-suited for preserving
abrupt flow transitions at the boundaries [6]. Accordingly, we define
the regularizers

Ri(f) = )\C/R/R3|curl {£(-,t)}(s)|dsdt, 3)
Ra(f) :/\d/R/RS|div{f(.,t)}(s)ydsdt. )

In effect, (3) and (4) allow one to penalize the total curl and/or
divergence—thus, the irrotational and incompressible behavior—of
the time-resolved flow.

In the temporal dimension, we assume that the flow is “smooth”
and take ¢(-) = | - |*. We then define

Rg(f):At// |:£ (s, £)|*ds dt, (5)
R JR3

where 0, is the time derivative. Note that our assumption remains
valid for laminar flows. Moreover, as explained in Nichols et al. [9],
flow velocity waveforms in the ascending and descending aorta are
varying smoothly through the cardiac cycle.

Proposition 1. Let R1,R2,R3 be defined as in (3), (4), and (5),
respectively. Then, each of these terms is invariant under scaling
(up to a multiplicative factor) and translation in space and time, and
rotation-invariant in space, where the rotation of a vector field by
some orthogonal matrix £ is given by £ — £T£(£ - t).

Proof. Translation- and scale-invariance both in time and in space
are obvious (derivatives are translation- and scale-invariant and the
integrals are translation-invariant and linear). To prove rotation-
invariance, we consider equivalent tensor definition of curl (see [6]).
‘We note that in Fourier domain,

F{div f} = jws f
F{curl f} = jwsf" — fjw]
F{0: £} = jwf

For rotation by a matrix £ we have (R¢ is the rotation operator):

F{div Ref} = jwd € F(Ews, wi) = j(€ws) "F(Ews, wr)
= F{Re div f}.
Feurl Ref} = jwsf" (Cws, we )€ — €T (Ews, we)jwa
= €T j(Ews)fT (ws, wi)€ — ETE(Ews, wi)j(€ws) "€
= F(£" curl f(¢s,t)€).
F{ORef} = € jwif (Ews, wr) = F{ReOf}.
Taking magnitudes using |¢Tf| = |f| and |¢Tf¢| = |f] and with the

change of variable u = &s, with du = |det £|ds = ds, we arrive at
the desired result. U
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2.2. Discretization and Minimization Algorithm

The discretized flow is expressed by f[k, n] over K x N C Z* x Z
where K and NV are the bounded spatial and temporal indexing sets.
We discretize the partial derivatives involved in the definition of
curl, divergence, and time derivative by using the finite-difference
operators
0i :f = f—f[ —e],

where e;, i = 1,...,4, denotes the ith standard unit vector in R*.
We use || - ||, notation for both the scalar and vector ¢, norms (for
vectors, it corresponds to the scalar £, norm of the magnitude of the
vector field [6]).

Then, by considering a quadratic fidelity term, we arrive at the
discrete formulation of our objective functional given by

1
Ts(f;y) = §Hf—y|\§ +R5(F) + R5(F), ©)

where the discrete spatial and temporal regularizers, respectively, are
given by

Ry(F) =X Y [leurls fulli + Aa > [ divsfalls (D)
neN neN

R (£) = Ael|Or.s £, 8)

with £, = (fn,1, fn,2, fn,3) being the nth volume for some n € N.
We discretize the curl and divergence operators as

curls £, = (03 fn,2 — 02fn,3,01fn,3 — 93 fn,1,02fn,1 — 01 fn,2)
diV§ fn = 61fn,1 + §2fn,2 + 63fn,3~

The discretized version of the time derivative 0y, s in (8) is given by
Ors i £ (0af1,0af2,04f3).

In the sequel, we shall derive a minimization algorithm for the
convex optimization problem

f* = argmin J5(f;y). 9)
£

Definition 1. The proximity operator associated to the functional
Rs is defined as

. 1
proxz, (y) = argmin R (x) + 5 [x -y}

Hence, we formally specify the solution of (9) as f* =
ProXp: zt (y) which requires one to compute the proximity
operator of R§ + R5. At this point, we apply a Dykstra-like
splitting [10] and compute it iteratively by using the individual
proximities associated to R5 and R%. The final scheme for (9) is
given in Algorithm 1.

The good news is that the proximity operator of Rj is separable
and can be implemented in parallel. Basically, at iteration ¢, one
needs to solve the nonsmooth problem

.1 .
min §HX — (fff) —l—pfﬁ)”% + Al curls x||1 + Aal| divs x|[x (10)

for all n € N. To compute (10), we use our recent algorithm [8]
which relies on Legendre-Fenchel duality arguments. Per contra, the
proximity operator of R is smooth and can be addressed by linear
solvers such as conjugate gradient (CG).

We conclude this section with some remarks regarding the op-
timization algorithm. We first note that the sequence (f m)t%m
generated by Algorithm 1 converges to f* under the minimal feasibil-
ity condition dom R§ N dom R # 0 [10]. However, in practice, it
is recommended to increase the number of inner proximal iterations
as the outer iterations proceed [11]. We have opted for this solution
as an effective method to improve convergence.



Algorithm 1: Spatio-temporal regularization
: input: y, Ac € R>0, Ad € R>o, At € Ryg
cset: 1+ 0; fO =y: p@D =0, q¥ =0
repeat
r® ProXp: (£ + p®)
pth) £ 4 p®) _ ()
£ proxg: (e + )
gt — p® 4 g® — g+
t—t+1
: until stopping criterion
: return £C¢-

—_
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3. NUMERICAL EXPERIMENTS
3.1. Simulated Flow

A 3D whole-heart MRI dataset was acquired on a 3T clinical MRI
scanner (MAGNETOM Trio, Siemens AG, Healthcare Sector, Er-
langen, Germany) with a 3D radial trajectory implementing a spiral
phyllotaxis pattern [12] that is adapted to self-navigation. The fat-
saturated balanced steady-state free precession (bSSFP) measurement
was segmented and ECG-triggered. The acquisition window was set
to mid-diastole. The following acquisition parameters were used:
TR/TE 3.1/1.56 ms, FOV (220 mm)’, matrix 192°, acquired voxel
size (1.15 mm)*, flip angle 70°, and receiver bandwidth 898 Hz/Px.
Throughout the acquisition, a total number of 11687 radial readouts
(approximately 20% radial undersampling) were recorded in free
breathing in 377 heartbeats with 100% scan efficiency.

The complete dataset was processed with the ITK-SNAP soft-
ware in order to segment a simplified (excluding carotid arteries) 3D
geometry of the human aorta. After segmentation, a Laplacian sur-
face smoothing was performed in the Meshlab (3D-CoForm project)
environment in order to obtain an eligible wall geometry for computa-
tional fluid dynamics. The smoothed STL surface mesh was imported
in the ANSYS® ICEM CFD™ software for the generation of the
computational mesh.

Blood was considered to be a Newtonian fluid with density 1040
Kg/m® and dynamic viscosity equal 0.004 Pa.s. The inflow boundary
was defined as volumetric flow (see Figure 1(a)). The walls were
described by the no-slip condition and the solution assumed laminar
flow everywhere in the flow field. Since the inflow is time-dependent,
the transient solver of ANSYS® CEX® was used to solve the Navier-
Stokes equations. Four complete cycles were simulated in order to
achieve good convergence not only in the spatial, but also in the time
dimension. Results were exported every 0.05 of a second and scaled
to an Euclidean grid by using linear interpolation. We used ParaView
(Kitware Inc.) for vector glyph illustrations.

Table 1. Comparison of denoising algorithms.

Regularization Input SNR [dB] | SNR improvement [dB]
Spatial-onl 0 13.38
pattat-onty 10 10.49

. 0 14.49
Spatio-temporal 10 10.93

The simulated flows were degraded by different levels of additive
white Gaussian noise. Spatial-only regularization, with 50 iterations,
was then applied to the noisy field where the parameters A. and \gq
were optimized using an oracle. This method was contrasted with
our spatio-temporal method with 10 outer iterations. Inner proximal
iterations—starting from 50—were increased by 10 after every outer
iteration. To investigate the effect of temporal regularization, we used
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Fig. 1. Denoising of simulated blood flow at t=0.1 sec: (a) generated
aorta geometry; (b) original blood flow; (c) noisy flow; (d) denoised
blood flow by the proposed method.

the previously obtained A\. and A4 and only optimized ;.

The results are summarized in Table 1. Spatio-temporal regular-
ization is seen to be superior to its spatial-only alternative in terms of
SNR for the noise levels considered in the simulations.

3.2. 4D Phase-Contrast MRI

As supplement to our in silico experiments, we considered a mul-
tidirectional phase-contrast MRI dataset in the region between the
proximal and thoracic aorta of a 25-year-old healthy male volunteer.
PC MRI data was acquired with a sagittal oblique 3D slab cover-
ing the entire aorta, using a navigator-gated, ECG-gated RF-spoiled
gradient echo (GRE) sequence. The dataset was acquired on a 3T
clinical MR scanner (MAGNETOM Trio, Siemens AG, Healthcare
Sector, Erlangen, Germany). The sequence was motion compensated
and the following imaging parameters were used: TR/TE 5.2/2.59;
flip angle 15°; velocity encoding 150 cm/sec; matrix 224 x 138 x 24,
field of view 450 mm, and acquired voxel size 2.0 mm?>. Pathline
visualizations are made by using GT-Flow (Gyrotools LLC) software.

Based on the near incompressibility (thus almost zero divergence)
of the blood flow, we set Ay > A.. For A\, we used the parameter
obtained from the simulated flow experiment of 10 dB input SNR.
The algorithm was again run with 10 iterations with the same inner
iteration strategy as in our previous experiments.

A qualitative examination of our results showed that the zero-
divergence assumption resulted in a great reduction of artifacts and
finer visualization of along the whole cardiac cycle. Furthermore, the
visualization of the helical flow patterns was improved as a result of
the assumption of smoothly varying flow. Based on these two aspects,
the regularized data were of substantially better quality compared to
those from the initial MRI recordings.



(b)
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Fig. 2. Phase contrast MRI: Initial data at (a) t=31.50 ms, (b) t=136.00 ms; Data after regularization at (c) t=31.50 ms, (d) t=136.00 ms.

4. CONCLUSION

We have proposed a variational method for the regularized recon-
struction of 3D+time flow fields where the objective functional is
justifiable from a physical and mathematical point of view. We have
applied a proximal-splitting algorithm for solving the problem and
demonstrated improved denoising performance for a simulated blood
flow in the human aorta. We have also illustrated that the proposed
method has been able to reduce artifacts in a real phase-contrast MRI
dataset and enhance the visualisation of the secondary flow patterns
in the aorta.
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