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Abstract
Active shape models (ASMs) have been widely used in segmentation tasks in medical image
analysis. Complex structures and a limited number of training samples can, however, result in the
failure to capture the complete range of shape variations. Various modifications to the point
distribution model (PDM) have been proposed to increase the flexibility of the model. Still model
parameters are often determined empirically without respect to the underlying data structure. We
explore shrinkage covariance estimation in building a PDM by combining the sample covariance
matrix with a target covariance matrix estimated from a low-dimensional constrained model.
Instead of using a global shrinkage intensity, we apply a spatially varying shrinkage intensity field
to better adapt to the spatially varying characteristic of a complex shape. The parameters of the
constrained model and the amount of shrinkage are determined in a data-driven fashion, so that the
resulting distribution is optimized in representing the underlying data. The PDM, which we call
SC-PDM, shows an increased flexibility in fitting new shapes and at the same time, is robust to
noise. We demonstrate the effectiveness of using SC-PDM to label gyral regions on the human
cerebral cortex.
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1. INTRODUCTION
Active shape models (ASMs) [1] have been widely used in medical image segmentation. A
known difficulty is that the subspace dimensionality of a point distribution model (PDM) is
limited by the training sample size, resulting in an over-constrained shape when segmenting
complex structures with high inter-subject variations–see Fig. 1 for examples on the human
cerebral cortex. Various approaches have been proposed to bridge the gap between the PDM
subspace and the real distribution in the high-dimensional shape space. These have included
introducing synthetic variations on the training samples [2], mixing the sample covariance
with an artificial covariance matrix [3], relaxing the model constraint at the fitting stage [4,
5], partitioning the coordinates into local blocks in spatial or spatial-frequency domain [6,
7]. A common problem of the above work, is that model parameters are determined
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empirically, and are not optimized with respect to the underlying data structure. Also, the
balance between flexibility and robustness has not been evaluated in past work.

Many of the above modifications to the PDM can be viewed as covariance regularizations.
For example, combining sample covariance with a constructed covariance matrix is a type of
shrinkage estimation of the covariance [8, 9]. The partition approach [6] enforces
independence (zeros in the covariance matrix) between local groups of variables. Crimi et al.
[10] discussed several covariance regularization techniques in building PDMs and proposed
a Bayesian approach using a Gaussian prior. In this work, we explore theshrinkage
covariance regularization for improving the PDM, and discuss how the model parameters
can be optimized in representing the underlying data.

The idea behind covariance shrinking is to combine the estimation of an unrestricted high-
dimensional model, here the sample covariance S, with the estimation from a lower
dimensional restricted sub-model, T, so that a new estimate S* = λT + (1 − λ)S can
outperform both S and T in terms of accuracy and statistical efficiency. T is often called the
shrinkage target and λ ∈ [0, 1] is called the shrinkage intensity, which can be determined
analytically by minimizing the mean squared error (MSE) [8, 9]. In this paper, we first
design a low-dimensional covariance model according to the prior knowledge of the shape
and estimate the model parameters. Instead of using a global shrinkage intensity, we
compute a spatially varying shrinkage intensity field to adapt to the spatially varying nature
of a complex shape. The resulting PDM, called the shrinkage covariance PDM (SC-PDM)
has an increased flexibility in fitting new shapes and at the same time is robust to noise. We
apply it to labeling of gyral regions on the human cerebral cortex.

2. SHRINKAGE COVARIANCE ESTIMATION
2.1. Shrinkage target

Let  be the k-th coordinate of the i-th landmark point. Let s( , ) be the element in

sample covariance S that corresponds to the covariance between  and . As in [9], the

covariance matrix is parametrized in terms of variances and correlations, i.e., s( , ) = r( ,

) . The low-dimensional constrained model T(Θ) for the covariance
matrix should conform to the presumed low-dimensional structure in the data set, in order to
avoid introducing significant bias to the estimator. Based on the observation that points

close to each other are highly correlated, we model the correlation between  and  as a
decreasing function of dij, the distance between the i-th and the j-th landmark point. The

element t( , ) of the target covariance model T(Θ) has the following form,

(1)

where φ(dij; σd) is the decreasing function of dij with parameter σd, which is Gaussian in our
approach. We note that dij can be any distance measure, e.g., Euclidean or geodesic distance.
Since the sample variance and correlation can be computed directly from the training data,
the only parameter to be estimated for the constrained model is σd, which we compute by
maximum likelihood.
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2.2. Spatially varying shrinkage intensity
The optimal shrinkage intensity λ can be determined analytically. Ledoit and Wolf [8]
derived a simple theorem for choosing the λ that minimizes the mean squared error without
knowing the underlying distributions. Schafer [9] proposed, for small sample inference, to
compute λ by replacing all expectations, variances and covariances by their unbiased sample
counterparts,

(2)

Accordingly, λ decreases as the variance of the sample covariance decreases, so with
increasing sample size the influence of the target T diminishes. λ also depends on the
correlation between S and T. If both are positively correlated then the weight put on the
shrinkage target decreases. The denominator in Eqn. (2) protects the shrinkage estimate S*
from a misspecified target T. In our approach, instead of using a global shrinkage intensity,
we apply a shrinkage intensity field that has different values associated with each entry of
the covariance matrix,

(3)

Here kij,i’j’ = φ(dii’; σd)φ(djj℉; σd) is a distance based kernel function constructed by the
same decreasing function φ(dij; σd) as in Eqn. (1). In Eqn. (3), as compared to Eqn. (2), we
see that each term in the numerator/denominator is weighted by the kernel function kij,i℉j℉,
so that the amount of shrinkage at each entry of the covariance is computed from the
statistics of spatially adjacent points. The shrinkage covariance is then computed entry-wise
as a weighted sum of the corresponding entry of the sample covariance and that of the target
covariance. With the spatially varying shrinkage intensity field, one can better model the
correlations between a local group of points and adapt to the spatially varying nature of a
complex shape.

3. EXPERIMENTAL RESULTS
3.1. Model flexibility and robustness

We tested the proposed SC-PDM in approximating shapes with known point
correspondences, for both noise-free and noisy cases, and compared with 1) the original
PDM, 2) a PDM combined with a smoothness model (SMT-PDM) [3], and 3) a PDM shrunk
to the proposed constrained model with a global shrinkage intensity (GSC-PDM). The shape
being modeled, as shown in Fig. 2 is a network of sulcal curves that forms the boundaries of
gyral regions of the left hemisphere of the human cerebral cortex, mapped to the unit sphere.
Sulcal curves are manually delineated and uniformly sampled to get the homologous
landmark points. Twenty subjects are used for training the PDMs and another twenty
subjects are used for testing. For the noisy case–shown in Fig. 2–block noise with random
positions, intervals, andmagnitudes are added to the landmark coordinates to simulate errors
in corresponding point detection. We approximate the shape with different numbers of
principal shape modes with coefficients truncated by three times the singular value
associated with that mode and and compute the mean approximation errors (MAE) over all
test shapes. For SMT-PDM and GSC-PDM, we test the model with different shrinkage
intensity.
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As shown in Fig. 3, the original PDM has the largest approximation error in both the noise-
free and noisy cases due to its limited number of eigenmodes. SMT-PDM reaches the least
approximation error with some shrinkage intensity in both cases when using a large numbers
of shape modes. However, as shown in Fig. 2, the low approximation error is a result of
over-fitting. Compared to SMT-PDM, the error of GSC-PDM and SC-PDM decreases much
faster as the shape mode number increases, and the approximation error does not increase
much from the noise-free to the noisy case. This implies that the target covariance estimated
from the proposed constrained model is a better approximation of the underlying true
covariance compared to the smoothness model. SC-PDM has a lower approximation error
than GSC-PDM, which verifies the effectiveness of the spatially varying shrinkage intensity
field.

3.2. Real segmentation task
Gyral labeling is a challenging task because of the large inter-subject variability in brain
morphometry. We applied a prior constrained point set registration method to identify the
sulcal curve network on a subject cortical surface and label the gyral regions [11]. As the
iteration increases, the shape is approximated by all shape modes of SC-PDM with
increasing coefficient threshold. To reduce the shape variations introduced by the surfaces of
different subjects, all the subject surfaces were mapped to a unit-sphere, and the PDM
building and point set registration were performed on the unit-sphere. Fifty subjects were
obtained from the Open Access Series of Imaging Studies (OASIS) database [12] and
manually delineated by a trained expert. Twenty subjects were used as training samples, and
the remaining subjects were used for testing. Fig. 1 shows the detected sulcal curves and
labeled gyral regions on one subject. Fig. 4 shows the average dice measure for each gyral
region. The overall average dice measure (area weighted) is 0.85 and the average dice
coefficient of all regions is above 0.7. Compared to our previous results in [11], although the
overall dice is about the same, the results on the low performance structures —e.g. the
frontal pole, temporal pole, and the divisions of the cingulate sulcus—are improved. These
structures have few sulcal features to follow and can only be estimated from prior
knowledge. Thus SC-PDM conveys the constraints from the shape prior, while also
capturing the large inter-subject variations.

4. CONCLUSION
We presented a shrinkage covariance based PDM to address the over-constrained problem
of a traditional ASM. In our approach, we fit a constrained covariance model to the training
data and apply a spatially varying shrinkage intensity to combine the sample covariance and
the constrained target covariance. Since the parameters of the constrained model and the
amount of shrinkage are determined in a data-driven fashion, the resulting distribution is
optimized in representing the underlying data. Experimental results demonstrate increased
accuracy and robustness of the resulting SC-PDM in fitting shapes. The results on real data
show the potential to use SC-PDM for segmenting complex structures—gyral regions on the
cerebral cortex—with limited (20) training samples. Future work will focus on the form of
the lower dimensional model and its parameter estimation.
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Fig. 1.
Example SC-PDM result for gyral labeling. (a) A sulcal curve network matched to a subject
feature map, shown mapped to a sphere. (b) The same sulcal curve network shown on the
corresponding partially inflated cortical surface. (c) Labeled gyral regions generated from
the sulcal curve network. (d) Major sulcal curves in the curve network (colored) overlayed
with manual delineations (black). See Sec. 3 for complete details.
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Fig. 2.
Example shape approximation results from using all shape modes with coefficients truncated
by three times the singular value associated with that mode. The black curve shows the test
shape, while red denotes the approximated shape.
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Fig. 3.
The top figure shows the mean approximation error vs. the number of modes for the noise-
free case. The bottom figure shows the mean approximation error vs. the number of modes
for a case with noise added (see text for details of the noise). The PDMs shown are the
global shrinkage intensity model (GSC-PDM) with two values of λ = 10−3 and 10−4, a
smoothness model (SMT-PDM) [3] with two values of λ = 10−2 and 10−4, the original PDM,
and the shrinkage covariance model (SC-PDM).
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Fig. 4.
Statistics on the dice coefficients for each gyral region over all subjects.
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