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ABSTRACT

The wall thickness is known as a valuable measure for the
cardiac diagnosis. From the geometric point of view, it can
be considered as a function defined on the 2D manifold of
the medial surface. This paper presents a novel classifica-
tion method based on medial representation to diagnose and
detect the myopathic regions on the left ventricle. A shape
space is proposed and constructed based on the changes of
the left ventricle wall thickness, in which two shape descrip-
tors are introduced which show remarkable performance to
distinguish normal and abnormal left ventricle deformations.
The experimental results show that this method can automat-
ically classify the healthy and myopathic subjects and detect
myopathic regions on the left ventricle well.

Index Terms— Medial Surface, Shape Space, Medial
Representation, Left Ventricle Diagnosis

1. INTRODUCTION

Hypertrophic Cardiomyopathy (HCM) is a well-known cause
of heart failure or sudden cardiac death in children [1], in
which a portion of myocardium wall becomes thickened, and
the normal alignment of muscle cells is disrupted, which ob-
structs the outflow of blood from the left ventricle. HCM
is usually detected by echocardiogram or Cardiac Magnetic
Resonance imaging (CMR), which detect the physical proper-
ties of the left ventricle wall [2]. However, navigation through
sequential poses of a 3D deformation needs highly experi-
enced cardiologists, which increases subjectivity in the anal-
ysis. This urges a deformation analysis method which classi-
fies the 3D heart deformations.

Recent researches ([3][4]) have introduced methods that
take into account all morphology of the left ventricle in order
to localize myocardial regions showing abnormal contractile
behavior based on statistics trained from healthy wall mo-
tion. Previous studies have applied the medial model to the
right/left ventricle deformations and concluded that the me-
dial model can capture the deformation of the left and right
ventricles along with the changes of their wall thickness over
time [5]. Further, some researchers propose deformable para-
metric representations of the boundary-medial relationship,

i.e. medial representation, which are deformed to fit the in-
teriors of objects to the model structure ([6][7]).

In the medial representation framework, the LV medial
surface (M) is a topological disk consisting of some atoms.
Each atom (m) contains the center of an inscribed sphere (x),
the sphere radius (r), and two or three vectors, called spokes
(Si), from the sphere centers to the two or three tangent points
on the LV boundary (Fig. 1.a), i.e., m = {x, r,Si} ∈ M.
The atoms can be considered as control points on a continu-
ous medial surface [8]. An end atom is an atom with three
spokes located on the boundary of the medial surface. To
simplify the calculations, we do not consider end atoms in
this study, thus m ∈

{
R3 × R+ × S2 × S2

}
. Let points p

and q be two points in a neighborhood on a Riemannian man-
ifold N. In general, the Log map of q w.r.t. base point p,
i.e. Logp(q), maps q onto the tangent plane of N at point
p such that, dN(p, q) = ‖p− Logp(q)‖, where dN(p, q) is
the geodesic distance between p and q. In fact, Log map
linearizes the non-linear Riemannian manifold by projecting
each point onto a linear tangent plane and preserving the dis-
tance between two points. As an special case, the Log map
between point x = (x1, x2, x3, ) and base point p = (0, 0, 1)
on a sphere S2 is computed as,

Logp(x) =

(
x1 ·

θ

sin(θ)
, x2 ·

θ

sin(θ)

)
, (1)

where θ = arccos(x3) is the spherical distance between
the point p and x (Fig. 1.b).

This paper aims at extraction of geometrical properties of
myocardium wall from the acquired CT images, classifica-
tion of the left ventricle wall thickness (WT) of two groups of
healthy and myopathic subjects, and localization of the my-
opathic areas. We utilize the medial representation (m-reps)
framework and introduce a non-linear shape space based on
two novel shape descriptors which capture the changes of the
LV wall thickness, and then measure the geodesic distance
between each pair of points on the shape space using a novel
log map metric. The major novelty is that the constructed
shape space can capture the intrinsic geometrical differences
between LV deformations and determine the dis/similarity on
a non-linearity space. The extrinsic shape variations between
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(a) (b)

Fig. 1. (a) A non-boundary atom m contains a position (x),
a radius (r), and two spoke directions (S0, S1), (b) The Log
map of point q w.r.t. base point p on the sphere S2.

subjects can be excluded and do not affect the process of clas-
sification, which reduces subjectivity in the LV deformation
analysis.

2. THE LEFT VENTRICLE MEDIAL SURFACE

Since the myocardium wall becomes thicker in myopathic ar-
eas, their corresponding wall thickness changes differently
compared with a healthy subject during one heart cycle. Let
r(t1) and r(t2) be the radius elements of an atom m at two se-
quential time points t1 and t2, respectively. The Ratio of Wall
Thickness (RWT) at two time points, i.e. r(t2)/r(t1), demon-
strates the changes of the wall thickness over time. The atoms
of the real myopathic regions (delineated by experts) were ex-
tracted from the real datasets with HCM, and RWT were cal-
culated at four diastolic and four systolic time points of one
heart cycle for atoms in both myopathic and healthy regions.

Our observations reveal that RWT values of atoms in my-
opathic regions are close to 1 during one heart cycle, which
shows these regions cannot contract or expand as the healthy
subjects whose RWT values are < 1 in diastole and > 1 in
systole. This makes RWT a good candidate to differentiate
healthy and myopathic LV’s, and localize myopathic regions.
However, due to the existence of noise in the acquired images,
as well as the lack of accuracy in the extracted medial sur-
face, some atoms in healthy subjects might have RWT values
close to one, which lowers the accuracy of RWT as a reliable
measure. To tackle this problem, two additional measures are
introduced, which can correct and enhance the accuracy of
RWT.

2.1. Average of Normal vectors (AoN)

Let M̂ be the set of all atoms whose RWT value is close
to one, which are candidates of being in the myopathic re-
gion, and let n be normal vector of the medial surface at each
atom in M̂, and navg be the Average of these Normal vec-
tors (AoN). Fig. 2.a shows the medial surface of a myopathic
LV at three sequential time points along with the normal vec-

(a) (b)

(c) (d)

Fig. 2. The medial surface of (a) a myopathic and (c) a healthy
LV at three diastolic time points. Different RWT values are
represented with different colors along with the normal vec-
tors of medial surface at atoms in M̂. (b) The Average of the
Normal vectors (AoN) of the atoms in M̂ have roughly the
same direction at three time points in the myopathic LV, (d)
yet AoN of the atoms in M̂ have considerably different direc-
tions in a healthy LV.

(a) (b)

Fig. 3. (a) MoC of a myopathic LV is located on the medial
surface, (b) In a healthy LV, the mean is inside the medial
surface.

tors of atoms in M̂. Since the atoms of a myopathic region
construct a patch-shape on LV, the direction of AoN does not
change noticeably during one heart cycle (Fig. 2.b).

As aforementioned, some atoms of a healthy LV might
belong to M̂, i.e. RWT ≈ 1; however, since there is no my-
opathic region on a healthy LV, the M̂ atoms in a healthy LV
are distributed all over the medial surface and this distribution
might change during one heart cycle at sequential time points
(Fig. 2.c). As a result, the direction of AoN changes consid-
erably during one heart cycle, and also during different cycles
(Fig. 2.d).

2.2. Mean of Centers (MoC)

Let x be the center of each atom in M̂ and x̄ be the Mean of
the Centers (MoC). In a myopathic LV, the M̂ atoms are con-
centrated around the myopathic region, thus MoC is close to
the medial surface during one heart cycle (Fig. 3.a). In con-
trast, the M̂ atoms distributed all over the medial surface in a
healthy LV, and the corresponding MoC is located inside the
medial surface at different time points (Fig. 3.b). Therefore,
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we can easily calculate MoC of atoms in M̂ and compare its
closeness to the medial surface in different subjects to deter-
mine abnormalities.

2.3. The Medial Surface Shape Space

In order to quantify and measure the similarity of the LV de-
formations reflected by M̂, we embed the deforming shapes
into a medial surface shape space, where each point corre-
sponds to a certain LV medial surface. Let G be the medial
surface shape space manifold and g ∈ G be a point corre-
sponding to one medial surface. Based on the shape descrip-
tors and characteristics described in Section 2, we can define
the unique shape space as,

g = (x̄, r̂ρ,navg) ∈
{
R3 × R+ × S2

}
,

where x̄ and navg are the MoC and AoN of M̂ of g,

r̂ =
∏
i∈M̂

(
ri(t2)

ri(t1)

)
,

is the multiplication of RWT values over all atoms in M̂, and
ρ =

∑
M̂ Logn(S)/|M̂| which measures the average of the

log map distance between the normal vector n and the corre-
sponding spoke vector S at all the atoms in M̂, which in turn
is the geodesic distance between two vectors on sphere S2.

In our defined medial surface shape space, the geodesic
distance connecting two points on the shape space manifold
measures the similarity between their corresponding medial
surfaces. Let g1 = (x̄1, r̂ρ1 ,n

avg
1 ) and g2 = (x̄2, r̂ρ2 ,n

avg
2 )

be two medial surfaces in G. We project the non-linear
shape space onto the linear tangent space using the log map
which preserves the geodesic distance, i.e., dg(g1, g2) =∥∥Logg1(g2)

∥∥, where dg is the geodesic distance between g1
and g2 on the shape space manifold and Logg1(g2) is their
log map. The magnitude of the log map is defined using the
linear Euclidean distance measure as,

∥∥Logg1(g2)
∥∥ =

[
‖x̄2 − x̄1‖2 + ‖log(r̂ρ22 )− log(r̂ρ11 )‖2

+
∥∥∥Lognavg

1
(navg2 )

∥∥∥2] 1
2

, (2)

where Lognavg
1

(navg2 ) is the log map between navg1 and
navg2 on sphere S2 (Eq. 1).

2.4. Deformation Classification

Let g1, ..., gn be n points on shape space corresponding to n
poses of the LV during one heart cycle. As mentioned in Sec-
tions 2.1 and 2.2, the variations of AoN and MoC of a myo-
pathic LV is smaller than those of a healthy LV. As a result,
the points gi are closer to each other in a myopathic LV than

in a healthy LV. Therefore, the variance of the points which
reveals the closeness of the points gi, can be used to classify
healthy and myopathic LV’s.

Since the points gi’s are located on a non-linear shape
space manifold, we calculate the intrinsic variance of gi’s for
each LV rather than the ordinary variance. First, the intrinsic
mean of the points gi’s is computed based on the proposed
metric as in [8]. Next, the intrinsic variance σ2 is calculated
as,

σ2 = Σni=1d
2
g(µ, gi)/n = Σni=1 ‖Logµ(gi)‖

2
/n,

where µ is the intrinsic mean of gi’s, and ‖Logµ(gi)‖ is the
geodesic distance between µ and gi based on the proposed
metric.

3. RESULTS

Five myopathic subjects whose cardiac abnormalities were
verified by cardiologists, and nine control subjects partici-
pated in this study. CT scans of the heart during one heart
cycle were acquired from the subjects with voxel size of 0.5×
0.5 × 0.5mm3, tube voltage of 125kV, FOV=500mm, and
gantry angle 0 ∼ 15◦. Each dataset contains eight time points
during one heart cycle.

First, the medial surfaces of different poses are extracted
and registered using the method in [5] such that each me-
dial surface contains 400 atoms. Then, the location of each
pose embedded in the medial surface shape space is calcu-
lated along with the intrinsic variance for each subject. Ta-
ble 1 illustrates the sensitivity and specificity of our method.
The method shows better performance compared with other
methods based on the LV cavity, mean radial displacement
and mean radial velocity [9]. Indeed, this indicator is very
sensitive in detecting myopathic regions.

To better perceive dis/similarity of the deformations, the
corresponding medial surface points on the shape space man-
ifold are projected on a 2D plane using the MultiDimensional
Scaling method (MDS) and based on the proposed metric. For
better visualization, Fig. 4 only illustrates the points corre-
sponding to two myopathic subjects and two healthy subjects
after projection on the 2D plane. In the myopathic subjects,
since MoC’s and AoN’s do not change in sequential poses,
their corresponding embedded points are located close to each
other on the shape space manifold, so are their corresponding
points on the 2D plane after the MDS projection(Fig. 4).

Table 1. Sensitivity and Specificity of our method
Sensitivity Specificity

Our Method 80.0% 77.8%
Mean Systolic Radial 79.4% 54.9%
Mean Radial Displacement 76.2% 70.9%

1116



Fig. 4. The projection of two healthy and two myopathic LV
motions (each containing 8 motion snapshots) onto the 2D
plane illustrates that the points corresponding to the healthy
LV are scattered all over the 2D plane, but those of the myo-
pathic LV are concentrated on the same part of the 2D plane.

Table 2. Performance of the algorithm against noisy datasets
with different percentages of additive noise variance

Additive Medial
Surface Noise

Uniform
Noise

Gaussian
Noise

1% 88.6% 85.7%
2.5% 83.3% 82.0%
5% 77.0% 78.9%

Due to inaccuracy in the medial surface extraction and
also due to existence of noise in the acquired images, the me-
dial surface may not be extract accurately. To evaluate the
performance of the method against these inaccuracies, uni-
form and Gaussian noises are added to the atoms extracted
from the healthy and myopathic subjects. The noise was first
added to the atom centers (x), i.e. medial surface, and then
to the atom radii (r), i.e. wall thickness. The result of the
classification is illustrated in Table 2 with different noise dis-
tributions. As seen, the performance is acceptable up to 5%
of additive noise.

4. CONCLUSIONS

The medial surface shape space is presented to classify and
compare LV deformations based on the changes of the wall
thickness. Indeed, it is of great use to diagnose the myo-
pathic left ventricles in which myopathic regions do not work
normally and the wall thickness is affected accordingly. In
particular, we employ RWT values of each LV to detect the
candidate myopathic locations. To improve the performance
of the RWT values, two shape descriptors AoN and MoC are

introduced to construct a non-linear shape space which has
great potential to capture the non-linearity of the LV defor-
mation for HCM diagnosis, which reduces subjectivity in the
LV deformation analysis. The results on real datasets on myo-
pathic/healthy subjects show high resistance against noise and
accurate myopathic/healthy LV classification, which is com-
parable to the previously reported studies.
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