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Abstract

This paper proposes a longitudinal intensity normalization algorithm for T1-weighted magnetic

resonance images of human brains in the presence of multiple sclerosis lesions, aiming towards

stable and consistent longitudinal segmentations. Unlike previous longitudinal segmentation

methods, we propose a 4D intensity normalization that can be used as a preprocessing step to any

segmentation method. The variability in intensities arising from the relapsing and remitting nature

of the multiple sclerosis lesions is modeled into an otherwise smooth intensity transform based on

first order autoregressive models, resulting in smooth changes in segmentation statistics of normal

tissues, while keeping the lesion information unaffected. We validated our method on both

simulated and real longitudinal normal subjects and on multiple sclerosis subjects.

Index Terms

MRI; intensity normalization; intensity standardization; brain; segmentation

1. INTRODUCTION

Magnetic resonance (MR) imaging is a popular noninvasive imaging modality used to image

the structure of human brains, for applications such as understanding and following the

progression of normal aging [1] or diseases like multiple sclerosis (MS) [2]. Analysis of a

series of 3D images of a subject taken at different times is valuable since the images provide

a time varying analysis of the soft tissues as well as biomarkers for the disease. However,

the longitudinal changes of cerbro-spinal fluid (CSF), gray matter (GM), and white matter

(WM) are of interest in both normal aging and diseases such as MS [3]. With MS, WM

lesions are also present in addition to the healthy brain tissues. New lesions could persist,

change volume, or disappear in later time points depending on the type and state of the MS

and the lesion itself. An example is shown in Fig. 1 where four time-points (denoted by T)

of magnetization prepared rapid gradient echo (MPRAGE) and T1-w fluid attenuated
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inversion recovery (FLAIR) scans are shown for an MS subject. It can be seen that a lesion

appears (red arrow) at the third time-point and is gone at the fourth. Other lesions (blue

arrow) are present in all the scans. Accurate segmentations of such lesions as well as stable

and smooth longitudinal segmentation of the normal tissues (i.e., CSF, GM, WM) are

important for understanding the progression of disease.

Several 4D segmentation methods have been proposed in the past. A 4D formulation of the

fuzzy c-means algorithm was proposed in [4]; it alternates between segmentation and a 4D

registration between the corresponding segmentations of the time-points, thereby producing

a longitudinally consistent segmentation. A 4D segmentation algorithm was also proposed to

obtain consistent segmentations and cortical thicknesses of infant brains [5], where the

segmentations of the later years are used as a prior to the first year and a novel 4D penalty is

introduced on the cortical thickness measurements. These methods are tied to the particular

choice of the segmentation and registration algorithms and can not be easily generalized.

Also, these methods are usually aimed toward normal brains, where they are shown to

provide longitudinally smooth segmentations and cortical thickness statistics. In this paper,

we propose an intensity normalization method for subjects with MS lesions, that can be used

as a pre-processing step to any segmentation method. We use a smooth auto-regressive (AR)

model for the longitudinal transformation of intensities of the normal tissues of different

time-points for T1-w MPRAGE scans. We also use a prior for the lesions at each time-point,

obtained from an atlas based topology preserving lesion segmentation method, called

Lesion-TOADS [6], which takes both the MPRAGE and the FLAIR scans of a subject (e.g.,

Fig. 1) and provides fuzzy lesion memberships at every voxel. We validated our method on

both phantom and a real longitudinal normal data by showing that the 4D normalization

leads to stable and smooth longitudinal segmentations on normal tissues in the presence of

MS lesions, keeping the lesion information unaffected, as MS lesions can disappear and

reappear at random time-points. We compare our method with a landmark based

normalization [7]. In the following section, we provide the mathematical model for the

intensity normalization process.

2. METHOD

We assume that there are T time-points in a 4D dataset of an MS subject, consisting of

MPRAGE and FLAIR scans at each time-point. We are interested in normalizing the

intensities of the MPRAGE scans as they provide the most information about the structure

of a brain. The FLAIR scans are used to obtain lesion information only. The 3D MPRAGE

and FLAIR volumes at each time-point are denoted by  and , t = 1, …, T, respectively.

We assume that all ’s, t = 2, …, T, are rigidly registered to the baseline, , and similarly

all ’s, t = 2, …, T, are rigidly registered to . Each  is scaled by the maximum intensity

of all the MPRAGE scans, such that the range of MPRAGE intensities is [0, 1]. Since all the

images have the same domain, we denote the intensity of a voxel at the ith location of  as

, t = 1, …, T. For normal tissues, we assume that if the anatomy does not change over

time, the intensity profile remains bounded, as seen from a deep WM and a ventricle voxel,

shown in Fig. 2(a)–(d) with green and magenta lines. If the anatomy changes, such as

growing ventricles, the intensities vary smoothly, as seen from the intensity profile of the
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voxel at the WM-ventricle boundary (blue). An AR(1) fit of the intensities of this voxel is

also shown in red, indicating good approximation.

Our primary aim is to normalize the 4D intensities of an MS subject in such a way that the

segmentations of the normal tissues become longitudinally smooth, while the lesions and

their computed volumes remain unaffected, as the lesions are the primary biomarker of MS.

To achieve this, we model the normal tissue voxels (i.e., largely CSF, GM, WM etc.) using

an AR(1) process (as motivated by Fig. 2), while making sure that the voxels with lesions

remain unchanged (as motivated by Fig. 1). This is formulated as,

(1)

 denotes the underlying normalized intensities at the ith voxel, ℓi denotes an indicator

function if the ith voxel at any time-point is a lesion, mi denotes the parameter of the AR(1)

process. However, instead of using indicator functions, we use fuzzy memberships from

Lesion-TOADS to provide a prior  at each voxel.  denotes the probability of

observing a lesion at the ith voxel at tth time-point. We note that  s are obtained using

only FLAIR intensities, because it is seldom possible to obtain lesion information from T1-w

MPRAGE scans due to its similar contrast to GM. Thus, using the lesion priors, we

reformulate Eqn. 1 using a combination of the priors, following a partial volume type model,

(2)

From Eqn. 2, it can be seen that the underlying normalized intensities  s follow an AR(1)

process if the ith voxel is not a lesion at any time-point, i.e., , ∀ t, indicating normal

tissue. If  for some time-point t = t1, the corresponding normalized intensity is the

observed one , indicating that the lesions are not being affected by the normalization. To

fix boundary conditions at t = 1 and t = T, we first assume , and impose penalties at

the boundaries such that  and .

Using an i.i.d. assumption on voxels, we propose to minimize the L2 norm between the

normalized intensities  s and the observed intensities  s and use higher penalty at the

boundaries as,

(3)

where Λ = [λ, 1, …, 1, λ] is a vector consisting of weights on the L2 errors for each time-

point, with higher weight (λ > 1) on the first and the last time-point. Replacing Eqn. 2 in
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Eqn. 3, the energy functional becomes a function of the AR parameters mi and the

normalized intensities ai’s as,

(4)

The ’s are obtained from Lesion-TOADS at each time-point. Eqn. 4 is minimized w.r.t.

mi by finding roots of a (2T − 1)th order polynomial

(5)

Similarly, ai is obtained from

(6)

Once mi and ai are found for each i ∈ Ω, the normalized intensities are obtained from Eqn. 2.

In all our experiments, we empirically choose λ = 3.

3. RESULTS

3.1. Validation

We first validate the effect of the smoothly varying normalization part, i.e., the AR(1)

process, on normal data by simulating atrophy near the ventricle. We generated eight time-

points of a normal subject using different atrophy radii [8], simulating normal aging where

ventricles tend to grow in size. The tissue contrast in the images are kept same while the

ventricles are deformed. The second and sixth time-points are shown in Fig. 3 (top row).

The region of atrophy is shown by the red box. Then the normalization is performed

assuming , ∀ t, ∀ i, as shown in Fig. 3 bottom row. The images are segmented with a

3-class Gaussian mixture model and the hard segmentations are compared with the 3-class

true segmentations provided by the atrophy simulation algorithm itself. The plots in Fig. 3

right panel show the volumes (in voxels) of 3 tissues, namely CSF, GM, WM, plotted

against the time-points. The tissue volumes after normalization have a similar trend as the

truth as well as the trend shown by original images. Our normalization tends to smooth the

intensity profile, indicating small decrease in WM volume. Although we lose a little

sensitivity that way, but as shown in the subsequent results, the gain in stability is

significant.

Next we experiment on MPRAGE scans of a normal subject acquired in ten consecutive

weeks. As before, by assuming , the lesion priors are not used. As the data is taken

weekly, we should expect very little or no variation in the longitudinal tissue volumes. Fig. 4

top row shows the 2nd and the 9th time-points of the subject, along with the normalized
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images in the second row. To show segmentation stability quantitatively, the relative

volumes of four normal tissues, CSF, GM, WM, and ventricles, are found using an atlas

based segmentation [9] and plotted in Fig. 4 third and bottom rows. Visually, the variation is

smaller after 4D normalization (red curves) in comparison with the original images and the

landmark based normalization [7]. The coefficient of variations (CV) for the 4 tissues before

normalization are [0.0126, 0.023, 0.006, 0.005], while they become [0.004, 0.003, 0.003,

0.002] after 4D normalization. Comparing ours with the landmark based method, t-tests give

p-values < 0.05 for the null hypothesis that the differences in CV are the same between our

method and [7] as well as between our method and the original ones, indicating significant

improvement in the stability of the longitudinal segmentation in the absence of lesions.

3.2. Experiment on MS data

In this section, we show the effect of longitudinal segmentation on both normal tissues and

lesions for 16 MS subjects, having 3–5 time-points each, approximately separated by a year.

Every subject has a 3D MPRAGE and a FLAIR acquisition of size 218×262×170, with

0.828×0.828×1.1mm3 resolution. Each time-point, t = 2, …, T, is rigidly registered to the

first year MPRAGE. Using the MPRAGE and the FLAIR scans, we first find the lesion

priors  s, then normalize the MPRAGE scans using the lesion priors using Eqn. 5 –6.

Three time-points of a subject are shown in Fig. 5 top row, along with the whole brain

segmentations before and after normalization. As seen from the absolute difference image of

the third and second time-points, 4D normalization reduces the difference in intensities

significantly, although lesion intensities are preserved, shown using a red arrow.

To show the quantitative improvement in segmentation stability, we report mean and

standard deviation of CVs in Table 1, averaged over 16 MS subjects. A t-test shows that the

CVs are significantly reduced (p-value < 0.01) after 4D normalization for CSF, GM, and

ventricles compared to the original images as well as the landmark based normalization,

indicating more stable longitudinal segmentation. An F-test assuming the null-hypothesis

that the lesion volumes are the same before and after normalization gives a p-value > 0.05,

indicating no significant change. We plot the relative volumes of the tissues as well as

lesions w.r.t. the time-points in Fig. 6 for the subject shown in Fig. 5. Evidently, the

segmentations for normal tissues (such as ventricle and GM) have become more stable, with

a gradual increase in ventricles and decrease in GM, (CV 0.031 compared to 0.044 for

ventricles), as expected in MS [3]. Also the lesion segmentation remains unaffected, as seen

visually. Here we mention that the normalized images visually look more smooth than the

original ones, which is the result of the AR(1) smooth regression.

4. DISCUSSION AND CONCLUSION

We have proposed a novel 4D intensity normalization frame-work for T1-w MPRAGE

images. The method takes into account the lesion information and produces stable

longitudinal segmentations of normal tissues while keeping the lesion information

unaffected. In the future, we will incorporate FLAIR intensities in the normalization process

to have more robust normalization.
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Fig. 1.
MPRAGE (top) and FLAIR (bottom) scans for four time-points of an MS subject are shown.
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Fig. 2.
(a)–(c) shows three time-points of a normal longitudinal dataset [1]. Intensities of three voxels in (a), are plotted in (d), while an

AR(1) fit of the intensities of the voxel at the WM-ventricle boundary is shown as a red line.
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Fig. 3.
Left panel shows original images with atrophy and the corresponding normalized images. The right panel shows the volumes (in

voxels) of CSF, GM and WM for eight time-points, obtained from the hard segmentations of the truth (red), original images

(blue) and the normalized ones (green).
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Fig. 4.
Original and normalized images of two time-points of 10 weekly scans of a normal subject and the corresponding difference

images. Bottom two rows show the relative volumes of CSF, GM, WM, and ventricles plotted against the time-points.
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Fig. 5.
Original and normalized MPRAGE scans of an MS subject, along with the corresponding whole brain segmentations of the

normalized image for the major tissues are shown. Lesions are shown in yellow.
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Fig. 6.
GM, ventricle, and lesion relative volumes plotted against the time-point for two subjects. Dotted line indicates the one shown in

Fig. 5.
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Table 1

Coefficients of variations of relative volumes of four tissues before and after ours and landmark based

normalization, denoted by LM.

CSF Ventricle GM WM

Before 0.033±0.012 0.041±0.019 0.014±0.007 0.011±0.006

LM 0.037±0.014 0.039±0.019 0.015±0.006 0.016±0.016

4D 0.027±0.013 0.032±0.019 0.011±0.006 0.010±0.007

Bold indicates statistically significantly smaller than the other two (p-value < 0.05).
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