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Abstract
Accurate segmentation is an important preprocessing step for measuring the internal deformation
of the tongue during speech and swallowing using 3D dynamic MRI. In an MRI stack, manual
segmentation of every 2D slice and time frame is time-consuming due to the large number of
volumes captured over the entire task cycle. In this paper, we propose a semi-automatic
segmentation workflow for processing 3D dynamic MRI of the tongue. The steps comprise
seeding a few slices, seed propagation by deformable registration, random walker segmentation of
the temporal stack of images and 3D super-resolution volumes. This method was validated on the
tongue of two subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR
images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic
segmentations of 52 volumes showed an average dice similarity coefficient (DSC) score of 0.9
with reduced segmented volume variability compared to manual segmentations.
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1. INTRODUCTION
The mortality due to tongue cancer is lower than other cancers, but the incidence of oral
cancer has increased in the last four decades. Generally, treatment with surgical ablation of
tongue tumor (glossectomy) and chemo-radiotherapy may lead to speech and swallowing
complications, thus affecting the quality of the patient’s life. Therefore, understanding the
relationship between tumor, tongue structure and function becomes crucial for diagnosis,
surgical planning and outcomes, and scientific studies. However, the ability to measure
speech or swallowing dysfunction in these patients has been limited and is largely semi-
quantitative. Characterization of tongue motion is challenging because the tongue deforms
rapidly over a wide range with complex interactions between multiple muscles to produce
fast and accurate movements [1]. Currently, there is no tool to directly characterize tongue
motion and function with respect to surgical approach and reconstruction procedures, or
chemo-radiation treatment in these patients [2].
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Magnetic resonance imaging (MRI) plays an important role in the analysis of the structure
and function of the tongue due to its excellent soft tissue contrast. In particular, fast MR
imaging with tagging and target tracking capability allows quantitative analysis of tongue
motion while carrying out a specific speech or swallowing task. 3D dynamic MRI
(alternatively, 4D-MRI) is desirable because it yields volumetric images that change over
time. However, there still exist undesirable trade-offs between temporal resolution and
signal-to-noise ratio (SNR), i.e., image quality [3]. Consequently, the majority of dynamic
MR imaging techniques involve sequential multi-slice 2D image acquisition as it is readily
suited to minimize intra-scan motion while maintaining high spatio-temporal resolution
[3-6]. There have been numerous attempts to compute 3D motion using tagged-MRI, mostly
for cardiac motion analysis [4-7]. Several well-established algorithms such as the harmonic
phase (HARP) tracking algorithm [4, 5] and incompressible deformation estimation
algorithm (IDEA) [6] enabled a computation of 2D and 3D motion fields from tagged-MR
data. We have recently proposed a workflow (see Fig. 1) using HARP and IDEA to analyze
3D motion of the tongue from multi-slice dynamic cine- and tagged-MRI [8, 9].

Image segmentation of the target anatomical structures is a fundamental and challenging
problem in the MR-based analysis. 3D motion analysis requires properly segmented tongue
volume masks on which the 3D motion field is computed. Although there are numerous
methods available for a single MR image/volume segmentation [10], there is no systematic
and efficient approach to segment time-varying volumes for motion analysis. Therefore, the
user has to segment individual slices or volumes at every time frame using a manual or
semi-automatic method. This is time-consuming due to the large number of images or
volumes throughout the entire task cycle; in our experiments, there are 26 volumes per
second.

This paper proposes a semi-automatic segmentation method, which bridges the gap between
fast 4D-MR image acquisition and established 2D/3D motion analyses to complete the
dynamic MR-based tongue motion analysis workflow. The proposed method computes a
tongue mask at every time frame with minimal user input, thus significantly alleviating the
segmentation burden for the user.

2. METHODS
2.1. Image acquisition

Multi-slice 2D dynamic cine-MRI and tagged-MRI datasets are acquired from the subject
using exactly the same orientation, spatial and temporal parameters in the axial, coronal, and
sagittal orientations while the subject repeats a speech task. The slice image repetitions are
sorted based on the speech phase, and averaged to produce an averaged multi-slice 2D
dynamic MR image sequence at three orthogonal orientations and multiple time frames. A
typical number of slices in each orientation of the cine- and tagged-MR datasets in our
experiments is 10-12 axial, 9-14 coronal and 7 sagittal. The tagged images contain
horizontal and vertical tags over 26 time frames. Each image is 128×128 pixels with a pixel
size of 1.875×1.875 mm2, and both slice-thickness and tag spacing are 6 mm.

2.2. Super-resolution volume reconstruction
These multi-slice 2D dynamic MR scans provide high in-plane resolution (1.875 mm), but
relatively poor through-plane (slice-selection direction) resolution (6.0 mm). Consequently,
each dataset by itself is not sufficient for volumetric image processing and analysis such as
segmentation, registration, and 3D motion analysis. To overcome this limitation, we derive a
high-resolution, isotropic 3D volume from the three orthogonal 2D multi-slice image stacks
using a super-resolution reconstruction technique developed by our group [11]. We first
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generate isotropic volumes by upsampling each stack in the through-plane direction using a
fifth-order B-spline interpolation. We choose a target volume (in this study, sagittal) and
register the other two volumes (axial and coronal) to the target. We register by translating in
the 3 degrees-of-freedom using mutual information as a similarity measure because the
currently implemented HARP tracking and IDEA algorithms can only accommodate
translational motion of the tagged image plane. Slight intensity differences between the three
registered volumes are corrected by using a spline-based intensity regression method that
uses local intensity matching [11]. A single super-resolution volume of 128×128×128 voxels
with an isotropic voxel size of 1.875 mm is reconstructed by averaging these intensity-
corrected registered volumes. The super-resolution reconstruction is computed at every time
frame to form a high-quality 3D dynamic MRI. The super-resolution volume not only
provides a 3D volume with higher spatial resolution, but also reduces the blurring artifact
caused by the slight misalignment between multi-slice images at three orientations through
registration process. Therefore, direct segmentation of the 3D super-resolution volume
yields an improved segmentation outcome compared to each 2D slice image segmentation
followed by merging them into a 3D mask.

2.3. Random walker segmentation
We use the random walker (RW) segmentation algorithm [12] for segmenting both 2D cine
images and 3D super-resolution volumes due to its attractive features such as fast
computation, flexibility, ease of user interaction, and ability to produce an arbitrary
segmentation with enough interaction. RW is a robust, graph-based, semi-automatic
algorithm to find a globally optimal probabilistic solution for multi-label, interactive image
segmentation. A user specifies a small number of pixels with user-defined labels as seeds (in
our case, on the tongue and the background). Each unlabeled pixel is assigned to the label
with the greatest probability that a random walker starting at this pixel will reach one of the
seeds with this label. An interactive segmentation method is desirable for our application
because the user often has to segment the region where there is no obvious image contrast
and sometimes needs to edit the segmentation results.

We define a graph that consists of a pair G = (V,E) with vertices (or nodes) v ∈ V and edges
e ∈ E. We use a typical Gaussian weighting to each edge eij given by wij = exp{–β(gi – gj)2}
where gi indicates the image intensity at pixel i and β is a free parameter for which we used
the same value as in [12]. The RW probabilities are found by minimizing the combinatorial

Dirichlet problem , where x is a real-valued vector defined over the set of
nodes and L represents the combinatorial Laplacian matrix [12].

2.4. Temporal stack segmentation
In a single cine-MRI dataset, there are many temporal stacks that must be segmented, one
for each slice, each orientation, and each time frame. All together, there are about 800
images (~10 slices × 3 orientations × 26 time frames), which can be parsed into ~30
temporal stacks (~30 slices/time frame, each with 26 time frames) or 26 super-resolution
volumes (1 volume/time frame × 26 time frames). It is challenging to segment all of the
obtained 2D cine images (or the super-resolution volumes) due to the amount of data.
Therefore, we propose here a systematic approach to segment the original 2D temporal
stacks at once based on a minimal set of user-placed seeds to get 2D tongue masks.

A single temporal stack is smoother between adjacent time frames than between adjacent
slices due to the relatively large slice spacing. For each slice, we use time as the third
dimension instead of through-plane direction to form a 3D stack volume (2D target view +
time). We segment this 3D stack volume using RW segmentation. For each slice, seeds need
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to be input at only one time frame and then propagated to 3-4 other distributed time frames
by B-spline deformable registration (see Fig. 2(a)). The user-given and propagated seeds are
then used to segment the 3D temporal stack volume using RW (Fig. 2(b)). The process is
repeated for different slices at any orientations. Note that we only need to process several
user-chosen slices (in this study, we only use 7 sagittal slices) that are well-spread over the
target volume because these 3D temporal stack segmentations are used to segment 3D super-
resolution volumes of all 26 time frames.

2.5. Super-resolution volume segmentation
3D temporal stack segmentations (7 sagittal slices in our case) are used to generate seeds for
the segmentation of 26 super-resolution volumes. Since the 2D cine images are sub-planes
of the super-resolution volume, seeds on the 2D cine images can be directly imported to the
corresponding slice images of the 3D super-resolution volume. For the time frames where
no seeds are provided, seeds are extracted from the segmented 2D masks. To remove
possible segmentation errors near the boundary and reliably extract seeds from the
segmented 2D mask, the segmented mask M is first eroded using a disk structuring element
D. Eroded mask Me for each label is computed by

where E is a Euclidean space, Ds is a translation of D by the vector s, i.e., Ds = {x + s|x ∈

D}, ∀s ∈ E. Boundary  and the skeleton  of the eroded mask for each label l are then
extracted. Image skeleton is computed by the medial axis transform. Seeds for each label are
created by the union of the points on the boundary and the skeleton of the eroded mask:

where i is the slice index and Nl is the number of labels.

Once all the seeds are imported and extracted from the 2D cine images, the super-resolution
volume at each time frame is segmented by RW using these seeds. Figure 3 shows an
example of seeds extracted to a sagittal slice of a super-resolution volume from a 2D
segmented mask. Figure 4 shows two example super-resolution volume segmentations
performed on time frame 13 (seeds are provided) and 20 (seeds are extracted from 2D cine
segmented masks).

3. RESULTS
We evaluated the proposed methods on two normal volunteers who performed the same
speech task. Each subject repeated the sound “asouk” and multi-slice cine- and tagged-MR
images (128×128 pixels, a pixel size of 1.875×1.875 mm2) were acquired. A user-chosen
ROI of 70×70 pixels on each slice was used for segmentation. Subject 1 data had 12 axial,
14 coronal and 7 sagittal slice images, and the subject 2 data had 10 axial, 9 coronal and 7
sagittal slice images. There were 26 time frames for both data sets. An isotropic super-
resolution volume (128×128×128 voxels, voxel size of 1.875×1.875×1.875 mm3) was
reconstructed at every time frame. The user provided seeds on 7 sagittal slices only at time
frame 13 (middle of 26 time frames), and the seeds were propagated to time frames 3, 10,
17, 24. For each slice, 26 time frames were stacked to form a 70×70×26 3D temporal stack
volume, and it was segmented by RW using the seeds available at 5 time frames (3, 10, 13,
17, 24). For every time frame, corresponding 3D super-resolution volume was then
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segmented using the seeds generated from the temporal stack segmentations. Figure 4 shows
two example segmented surfaces of subject 2 computed by RW at two time frames with
user-provided (frame 13) and extracted (frame 20) seeds.

In order to evaluate the semi-automatic segmentation quality, a trained scientist manually
segmented all 52 super-resolution volumes (1 volume/time frame × 26 time frames × 2
subjects). DSCs between the semi-automatic and the manual segmentations were 0.89 and
0.9 for the subject 1 and 2, respectively (Table 1). Since the tongue is known to be
incompressible, i.e., the volume of the segmented tongue mask at every time frame should
not vary [6, 9], we measured the volume variation of the segmented masks in the manual
and semi-automatic methods. The volume changes are plotted in Fig. 5, and the mean and
standard deviation of segmented volume sizes are summarized in Table 1, showing that the
segmented volume size is more constant with the semi-automatic than manual segmentation.

4. CONCLUSIONS
In this paper, we described a semi-automatic segmentation method for dynamic MR-based
3D motion analysis of the human tongue. The proposed semi-automatic segmentation
method requires user-given seeds only on a few slice images and time frames and
automatically propagates the seeds to the other frames by deformable registration.
Furthermore, successive 2D temporal stack volume segmentation followed by the super-
resolution volume segmentation by RW over all time frames enable segmentation of the
time-varying volumes with minimal user interaction, thus significantly reducing the
segmentation burden while keeping more consistent segmentation quality.
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Fig. 1.
3D tongue motion analysis workflow based on multi-slice dynamic cine- and tagged-MRI.
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Fig. 2.
Temporal stack segmentation of a set of sagittal images in a single slice. (a) Seeds provided
by the user at time frame 13 (red: tongue, green: background), are propagated to different
time frames (3, 10, 24). (b) 3D temporal stack segmentation by RW using the seeds in (a).
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Fig. 3.
Seed extraction from 2D cine to 3D super-resolution volume. (a) Segmented 2D cine image.
(b) Corresponding sagittal slice of the super-resolution volume overlaid with extracted
seeds.
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Fig. 4.
Example segmentations of super-resolution volumes of tongue. (a) User-given seeds
imported to the super-resolution volume at time frame 13 (left) and the seeds extracted from
2D sagittal temporal stack segmentations at time frame 20 (right). (b) Surface rendering of a
super-resolution reconstruction. The tongue is located in middle of the volume where axial,
coronal, sagittal images are intersecting (c) Surface rendering of the segmented tongue at
time frame 13 and (d) at time frame 20 among 26 super-resolution volume segmentations.
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Fig. 5.
Segmented volume variability over time for two subjects (S1 and S2) with the manual and
semi-automatic segmentations.
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Table 1

Evaluation of the segmented volumes and the volume variability. The manual and semi-automatic
segmentations are compared. DSC scores, and the mean and standard deviation of the sizes of the 26
segmented volumes for each subject are shown

Subject DSC

Segmented volume variability
mean±std (cm3)

Semi-automatic Manual

S1 0.89 116.5 ± 4.7 120.1 ± 6.4

S2 0.90 102.9 ± 4.4 102.2 ± 5.2

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2014 January 15.


