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 

Abstract—Recent developments of susceptibility weighted 

MR   techniques have improved visualization of venous 

vasculature and underlying pathologies such as cerebral 

microbleed (CMB). CMBs are small round hypointense lesions 

on MRI images that are emerging as a potential biomarker for 

cerebrovascular disease. CMB manual rating has limited 

reliability, is time-consuming and is prone to errors as small 

CMBs can be easily missed or mistaken for venous cross-

sections. This paper presents a computer-aided detection 

technique that utilizes a novel cascade of random forest 

classifiers which are trained on robust Radon-based features 

with an unbalanced sample distribution. The training samples 

and their associated bounding box were acquired from a multi-

scale Laplacian of Gaussian technique with respect to their 

geometric characteristics. Validation results demonstrate that 

the current approach outperforms state of the art approaches 

with sensitivity of 92.04% and an average false detection rate of 

16.84 per subject. 
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I. INTRODUCTION 

EREBRAL microbleeds (CMBs) are small deposits of 

hemosiderin, corresponding to prior microscopic 

hemorrhages [1]. CMBs are spherical, relatively small with 

diameter size of 2 to 10mm [2], and hypointense on magnetic 

resonance images (MRI). CMBs with their anatomical 

prevalence are emerging as a new diagnostic marker of 

cognitive impairment and dementia [3], stroke and 

intracerebral haemorrhages (ICH) [4] and cerebral amyloid 

angiopathy (CAA) [5]. 

 Manual localization is the gold standard technique to 

assess incidence of CMBs. However, visual screening is 

time-consuming, subjective and has low reproducibility 

between observers [6]. Moreover, it is prone to errors as 

small CMBs can be easily missed, or mistaken for vessel 

cross-sections, especially in MR Susceptibility Weighted 

Imaging (SWI) due to the high sensitivity of this sequence to 

magnetic susceptibility [7]. 
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 Recently, there has been growing interest in Computer-

Aided assessment of CMBs in MR images. Seghier et al. [8] 

developed a unified probabilistic normalization-

segmentation framework to mark CMBs as an extra prior 

class. A set of morphological constraints were also imposed 

on the extra tissue prior followed by another iteration of the 

probabilistic segmentation to limit false detections. The 

method achieved CMB detection sensitivity of 50% while no 

results were reported on false detection rate. Barnes et al. [9] 

proposed a technique that first identifies hypointensities 

using local and global statistical thresholding algorithms. A 

supervised support vector machines classifier was then 

trained on a set of shape features to maximize the sensitivity. 

This method achieved sensitivity of 81.7% with 107 false 

CMBs per subject. Kuijf et al. [10] identified spherical 

objects using the radial symmetry transform (RST) applied 

on both echoes of dual echo T2*w. Further anatomical and 

statistical constraints were then introduced to improve the 

detection rate and obtained sensitivity of 71.2% producing 

17.2 false detections per subject. Bian et al. [11] developed 

an algorithm based on 2D RST evaluated on patients 

suffering from brain tumors with CMBs due to external 

beam radiation therapy. A 3D region growing followed by 

geometric feature examination was used on top of RST to 

improve the detection rate. A sensitivity of 86.5% and an 

average 45 false CMBs per patients was achieved. In their 

method more than 10 constraints were empirically 

established using 5 independent patients. Most recently 

Kuijf et al. [12] evaluated their approach on a larger cohort 

size by incorporating two parameters on RST responses in 

order to adjust for a desired sensitivity. They obtained 

sensitivities of 65%, 78% and 84% with 20, 49 and 96 

average false detections per subject, respectively. Various 

characteristics of these studies are listed in Table 1.  

This paper presents a flexible framework for computer-

aided detection of CMBs in SWI. This method utilizes a 

cascade of machine learning random forest (RF) classifiers 

that are trained on a set of robust Radon-based features. The 

training CMB samples are obtained from a multi-scale 

Laplacian of Gaussian (LoG) technique with respect to their 

geometric characteristics. The LoG approach significantly 
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reduces the computational time required for analyzing 3D 

brain volume and also allows accurate bounding box 

estimation for the samples prior to feature extraction. (refer 

to Fig. 1) 

Section II describes the dataset, candidate selection, 

feature extraction and classification pipeline. Section III 

presents results evaluated from sensitivity and false 

detection rates per subject. Finally, conclusion is described 

in Section IV. 

II. MATERIAL AND METHOD 

A. Dataset 

This study included a data set of 7 subjects with Alzheimer’s 
disease, 9 with mild cognitive impairment and 25 healthy 

controls from the Australian Imaging Biomarkers and 

Lifestyle study (AIBL) [1]. The subjects included 17 females 

(age 77.8±7.4) and 24 males (age 76.8±6.6).  

 For each subject, anatomical T1w and SWI MR images 

were available. All MRIs were performed on a 3T Siemens 

TRIO scanner. 3D SWI was acquired with 0.93×0.93mm in-

plane resolution and 1.75mm slice thickness, repetition 

time/echo time of 27/20msec, and flip angle 20°. T1-

weighted images were acquired using a standard 3D 

magnetization-prepared rapid gradient echo sequence with 

in-plane resolution 1.0×1.0mm, slice thickness 1.2mm, 

repetition-time/echo-time/T1=2.300/2.98/900, flip angle 9°, 

field of view 240×256, and 160 slices.  

 The SWIs were manually labeled by two clinical experts 

using the Microbleed Anatomical Rating Scale (MARS) [6]. 

A consensus was then attained for presence and number of 

lesions. For CMB presence, the inter-observer agreement 

was  =0.65, p<0.001; reader 1 consensus =0.8, p<0.001; 

reader 2 consensus =0.83, p<0.001. 

B. Pre-processing 

The T1w image for each subject was first segmented into 

gray/white matter and CSF using the expectation 

maximization segmentation algorithm. The resulting 

segmentations were then combined to generate a skull-

stripping mask which was then rigidly aligned to the SWI 

image through block-matching. The SWI was also corrected 

for bias field using N4 [1]. To enhance the contrast and 

normalize the intensity across subjects, the dynamic intensity 

range of the skull-stripped SWI was normalized to [0,1] after 

trimming the top 1% of intensity values. The image was then 

inverted so that CMBs and vessels appear hyperintense. To 

reduce noise and locally enhance the contrast, gradient based 

anisotropic diffusion and adaptive histogram equalization 

were applied on the SWIs. 

C. Candidate Pre-screening 

The analysis of image volumes to find all cubic regions-of-

interest (ROI) containing CMBs is a crucial step to spatially 

limit the high order analysis and computation time. We use a 

multi-scale LoG spherical/semi-spherical detection method 

with high sensitivity and low false detection rate [1]. The 

method has 3 steps: 

 Breaking down 3D sphere detection into multi-scale 

1D line detection along the x, y and z dimensions. 

 Identifying the center of any geometric shape by 

combining normalized line responses obtained in the 

previous step.  

 Employing eigenvalues of the Hessian matrix of the 

extracted center points in order to determine spherical 

objects. 

 Validation results in [1] demonstrate that the current 

approach has higher performance in terms of sensitivity and 

specificity and is effective in detecting CMB candidates with 

invariance to intensity, orientation, translation and object 

scale. More importantly, it is capable of detecting CMBs 

adjacent to a neighboring vessel. 

D. Candidate Bounding Box 

To extract a set of shape features, a 3D bounding box needs 

to be defined per candidate proportional to its size. Radon-

based features achieve a high response for spherical objects 

 

Fig. 1. Overview of the proposed processing pipeline  
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Fig. 2. The top left cell shows 5 

slices of a 3D ROI of a vessel 
(5x5x5) and CMB (7x7x5) selected 

in pre-screening phase.  The image 

slices are placed side by side for 
viewing purposes. The right column 

illustrates the mean and standard 

deviation feature descriptor used by 
the classifier. 
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once it is placed at the center of the ROI. The bounding box 

should be centered on the target, be small enough to enclose 

the entire extent of target structure while preserving 

sufficient background information.  

 In the current dataset with an abundant presence of small 

CMBs with in-plane size of 2×2 pixels, an ideal bounding 

box as characterized above could not be defined.  

 To address this issue, the SWI was up-sampled by a factor 

of 2 in every direction through linear interpolation. The 

multi-scale LoG is again performed locally on the up-

sampled image to estimate the size of the nominated 

candidate from the previous step. To achieve intensity shift 

invariance, the top and bottom 5% of the intensity values are 

removed and the result rescaled to [0,1]. 

E. Feature Extraction  

The Radon-based analysis has been shown to be effective in 

detecting Gaussian-like structures in the presence of noise or 

other structures in 2-dimensional images [1]. The Radon 

transform is capable of representing significant shape 

characteristics through an object’s directional property. This 

transform can be written mathematically as mapping an 

image f(x,y,z) to function Rf(). Let  ⃗ =(sincos, 

sinsin, cos),   =(x,y,z) a point on the image with image 

center as origin and     ⃗  the equation of a plane for a given 

polar angle , then the 3D radon transform of a image 

volume f is defined as: 
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where is the Dirac function. This projection is able to 

highlight geometric shapes described by the parameters 

() where  can be interpreted as the projection distance 

from the volume center. 

 Every image coordinate (x,y,z) is mapped to physical 

space by defining the center of the image as origin and 

including image spacing. Keeping the generality of the 

Radon projection outputs, the results are organized in 2-

dimensional fashion with axes of  and . 

 In [1] a set of Radon-based features was proposed to 

detect round structures in a sliding window in the presence 

of noise or other structures. These features are mean and 

standard deviation profile computed across the Radon angle-

dimension: 







NM

mean
xxRf

NM
xF

1

||'1),,'(
1

)'(


   (2) 

 


 


NM

x

meanstd
xFxRf

NM
xF

1

2

1

))'(),'(
||

1
(

1

1
)'(






 (3) 

Where    is the number of projection distances which is 

dependent on the ROI size, M and N are number of 

projection angles of polar coordinates θ and φ where here 
are assigned to: (θ, φ)   [0:15:165]. (Fig. 2) 

 Feature descriptors extracted from the Radon should be 

scale, rotation and translation invariant. The proposed Radon 

descriptors are invariant to rotation by nature. Scale 

invariance is obtained by resizing Fmean and Fstd to a fixed 

length. Translation invariance is enforced by placing the 

candidate CMBs at the center for the ROI prior to the Radon 

transform. 

F. Classification 

The capability of the proposed Radon features for 

identifying CMBs has been tested using binary RF classifier. 

High sensitivity of the candidate selection step to irregular 

and low contrast CMBs, adversely affects the training set to 

include several non-informative samples due to noise. This 

consequently results in an unbalanced training set with a 

class ratio greater than 277.  

The RF is able to handle large datasets with extremely 

unbalanced sample prevalence by incorporating class 

weights where misclassification of the minority class is 

penalized. However, the classification specificity is 

decreased due to the high presence of non-informative 

candidates in any randomly selected RF training set. 

 In the current work, a multi-layer classification cascade, 

composed of several RF classifiers, is proposed to 

 
Fig. 3. Outline for a 2-layer classification cascade with leave-one-out 

scheme in subject level used in this paper. 

TABLE I 
COMPARISON OF LITERATURE 

Method [8] [9] [10] [11] [12] 
Proposed 

method 

Year 2011 2011 2012 2013 2013 2013 

MRI 

modality 
T2* SWI T2* SWI T2* SWI 

Mag. Field 1.5T 1.5T 7.0T 3.0T 3.0T 3.0T 

Pathology Stroke AD/MCI CerV
1
 Tumor AD/MCI AD/MCI 

# Subjects 30 6 18 10 38/72
2
 41 

# CMBs 114 126 66 304 148 103 

Sensitivity 50% 81.7% 71.2% 86.5 78% 92.04% 

Avg. FPs  - 107 17.2 44.9 49 16.84 

1) Cerebrovascular Disease 

2) Number of pathological cases were 38 out of 72 patients where 71% of the 

CMBs were definite 



  

progressively rule out non-informative samples and then 

train the final level on a relatively more balanced dataset. 

Binary RF posterior probabilities control classification 

performance and applying a low value in initial layers can 

reject obvious candidates. The leave-one-out validation 

scheme was extended for the classification pipeline to ensure 

that the subject’s observation would not be part of the 

training sets. Fig. 3 shows the outline for a two-layer 

classification cascade approach. 

III. EXPERIMENTS AND RESULTS 

A total of 104 definite CMBs were identified from 41 SWIs 

with CMB prevalence of 2.36±3.09 per subject. One CMB 

was excluded due to its irregular shape (Fig. 5.a).  

 In the pre-screening step, in order to achieve sufficiently 

high sensitivity and specificity for candidates, the intensity 

and sphericalness parameters were empirically explored and 

set to 0.55. The multi-scale LoG smoothing kernels were 

assigned to [0.8:5.0] with a step size of 0.3 to comply with 

CMB diameter size of 2 to 10 mm. For the classification 

step, 2 cascades of RF classifiers were employed with leave-

one subject-out validation scheme. For the first classifier, the 

threshold on the posterior probability was chosen as 0.1 to 

ensure removing a sufficient number of CMB mimics while 

preserving most of the true CMBs.  

 The pre-screening step has a very high sensitivity of 

~98%, leaving 2 undetected CMBs out of 103 and produces 

on average 695 candidates per subject. Fig. 4 illustrates the 

FROC curve obtained from 1- and 2-layer classifiers. The 

best performance for the full process was achieved by 2-

layer cascade with an overall sensitivity of 92.04% 

producing on average 6.7 false-positives per true CMB and 

16.84 false CMBs per subject. Fig. 5 shows few false 

negative examples resulting from the proposed method. The 

quantitative results of the proposed technique along with 

similar in the literature are summarized in Table 1. 

However, performance of published studies depends on the 

dataset and can be biased due to imaging parameters, CMB 

appearance, underlying disease and the manual 

identifications. 

IV. CONCLUSION 

This paper presented a flexible framework to automatically 

detect cerebral microbleeds on MR images with a high 

sensitivity and a low false detection rate. This method can 

therefore be used to speed up manual identification of 

CMBs. Furthermore, it improves reliability and minimizes 

the inter-rater variability that is widely reported in manual 

ratings. As future work, the proposed method can be further 

improved by including more CMBs in the training set and 

incorporating Hessian shape descriptors in the feature set. 
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(a) 

  
(b) (c) 

  
(d) (e) 

Fig. 5.  Slices of 3D ROIs containing CMBs are placed side by side for 
visualization. (a) Shows a CMB that was excluded due to irregular shape. 

(b)-(e) are examples of false negatives resulting from the proposed method. 

 
Fig. 4. The FROC curve for the full process comparing one and two layer 
cascade classifier. 


