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Abstract

We propose a fully-automatic morphometric encoding targeted towards differentiating diseased 

from healthy cardiac MRI. Existing encodings rely on accurate segmentations of each scan. 

Segmentation generally includes labour-intensive editing and increases the risk associated with 

intra- and inter-rater variability. Our morphometric framework only requires the segmentation of a 

template scan. This template is non-rigidly registered to the other scans. We then confine the 

resulting deformation maps to the regions outlined by the segmentations. We learn a manifold for 

each region and identify the most informative coordinates with respect to distinguishing diseased 

from healthy scans. Compared with volumetric measurements and a deformation-based score, this 

encoding is much more accurate in capturing morphometric patterns distinguishing healthy 

subjects from those with Tetralogy of Fallot, diastolic dysfunction, and hypertrophic 

cardiomyopathy.

Index Terms

Morphometry; Manifold learning; Cardiac MR; Disease Classification

1. INTRODUCTION

To reduce the number of cardiac-related deaths, researchers are searching for new 

phenotypes from high-resolution cardiac MRI. Most morphometric studies rely on 

volumetric scores, such as [1], due to the difficulties associated with extracting more refined 

measurements. These scores are often insensitive to the heterogeneous and subtle 

manifestation of cardiac diseases. For example, the left ventricular ejection fraction is 

normal in 50% of heart failure cases. In this paper, we describe an automatic encoding for 

aiding the identification of disease-specific morphometric patterns from MRI.

Deformation maps frequently serve as descriptors of cardiac anatomy and function. For 

example, [2, 3] register all cases to a template and then regress the corresponding 

deformation maps with respect to clinical diagnosis. Alternatively, [4] align the series of 

images of a tagged MRI to identify disease specific motion patterns. All of these methods 

rely on accurate segmentations of the images to be analysed. Label maps enable explicit 
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tracking of the cardiac boundaries and simplify the registration task as non cardiac structures 

are ignored. To ensure accuracy, medical experts manually refine these segmentations. This 

task increases the risk of intra- and inter-subject variability. It is also time-consuming, which 

is a challenge for smaller studies and prohibitive for larger ones. To the best of our 

knowledge, our proposed morphometric encoding is the first approach that only requires a 

segmentation of a single cardiac MR scan, i.e. the template.

Similar to existing morphometric frameworks of brain image analysis [5, 6], we encode the 

anatomy of an individual scan by non-rigidly registering the template to that scan. Until 

recently, registering cardiac MRIs was considered difficult as scans can greatly differ with 

respect to the anatomy captured in their field of view and the shape of the anatomy. Our 

algorithm in [7] accurately registers those scans through online learning of the smoothing 

parameters and stitching together maps from different image regions. Assuming the 

registration between the template and a target scan is accurate, applying the corresponding 

deformation map to the segmentation of the template results in an accurate label map of the 

target scan. This observation motivates our morphometric encoding. We encode anatomy in 

the target scan by the deformation associated with that region, which is defined by the 

segmentation of the template scan. Thus, our encoding only requires a single segmentation 

unlike existing ones, such as [5, 6].

Learning disease-characteristic patterns from the resulting high-dimensional morphometric 

encoding is difficult due to the relatively small sample size of cardiac MR studies. We 

therefore derive a low-dimensional descriptor by applying manifold learning [8] to the 

encodings. We then further prune the resulting coordinates via minimum Redundancy 

Maximum Relevance (mRMR) [9], which only keeps the most informative ones with respect 

to distinguishing the populations under study. The outcome is a morphometric encoding that 

applicable to a variety of data sets as its important parameters are determined automatically.

We measure the accuracy of our encoding by training a classifier on distinguishing normal 

from diseased scans on 3 data sets. Each data set contains a different diseased population, 

which are Tetrology of Fallot, diastolic dysfunction, and hypertrophic cardiomyopathy. 

Performing leave-one-out cross validation, the accuracy of our encoding is higher than that 

of volumetric scores and an existing morphometric encoding, called RAVENS [6], which 

encodes shape by the deformation map from the scan to the template.

2. ENCODING MORPHOMETRY

We now describe our morphometric encoding, for which we first select a template before 

following the steps outlined in Figure 1, i.e. registering the template to the image, creating 

the initial high-dimensional morphometric descriptor, transforming the descriptor to a low-

dimensional encoding via manifold learning, and only selecting those encoding coordinates 

that discriminate between patient populations.

(1) Template Selection

The template can be empirically set beforehand or determined automatically based on the 

data-driven approach described below. Selecting the template is a critical component in our 
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framework, as a bad choice could negatively impact the accuracy of the encoding. Outliers, 

for example, are generally difficult to match to other scans and thus are not well suited as 

templates. We minimize this risk via GRAM [10], which first affinely registers all images to 

a common coordinate system and then selects the image closest to the geodesic mean across 

the scans of healthy subjects. This image is most similar and thus easiest to register to all the 

other scans of the healthy population. We complete the template by manually outlining the 

endocardium of each ventricle in the scan (see Fig. 1) resulting in a binary map BRV of the 

Right Ventricle cavity (RV) and a binary map BLV of the Left Ventricle cavity (LV). Note, 

that clinicians frequently measure the volume of the ventricles based on their cavities.

(2) Template Registration

We non-rigidly register the tem plate to all the other MRIs of the study via FLOOR [7]. We 

choose FLOOR as it learns the important parameters online and can register cardiac MRI 

that differ in their field of view and the shape of the ventricles. It determines the mapping at 

each image location by choosing the optimal solution from a set of candidates. Each 

candidate minimizes the energy function of the approach according to a specific smoothing 

parameter and image region. The result is a smooth deformation map, D, whose stiffness is 

regulated throughout the image domain by the shape difference of the underlying anatomy 

between the scans. In addition, missing correspondences are contained locally instead of 

corrupting the mapping throughout the entire image domain. It thus produces accurate 

results even if non-cardiac structures are not removed.

(3) High-Dimensional Encoding

Inspired by [6], we encode the anatomy of the input image I by analyzing the corresponding 

deformation map, DI, with respect to the binary maps BRV and BLV of the template. 

Specifically, we compute the Jacobian Determinant J(DI) of DI. We then multiply J(DI) with 

the warped binary maps BRV (DI) and BLV (DI) to determine the structure specific encoding:

In difference to RAVENS [6], an example of a deformation-based encoding, we compute the 

encoding in the image space instead of the template space. This allows us to infer local 

expansion or contraction of the shape with respect to the template using only a single 

segmentation (of the template).

(4) Derive Low-Dimensional Encoding for each Ventricle

For each ventricle, we determine a low dimensional encoding by learning the corresponding 

morphometric manifold from the encodings MI,∗V across all images. We choose ISOMAP 

[8] for this task it preserves morphometric characteristics, i.e., image regions with similar 

morphometry are close to each other on the manifold. We now explain in further detail 

ISOMAP with respect to the RV, noting that the same approach applies to the LV.

ISOMAP first arranges the RV region of the images as a graph, where each node represents 

the RV of a specific image and the length of an edge is defined by the distance d(·, ·) 
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between the corresponding image regions. We define the pairwise distance d(·, ·) between 

two image regions  and  by the L2 norm of the corresponding morphometric 

encodings  and :

with the sum over the voxels x inside the RV of the template. We note that this distance 

captures morphometric differences between image regions, as for images with similar RVs 

the corresponding encodings  are similar, so that d(·, ·) is small, whereas d(·, ·) is 

large for image regions with large morphometric differences.

Having defined d(·, ·), ISOMAP constructs a graph via the k nearest neighbor (kNN) 

algorithm. We set k, the size of the neighbourhood, to the smallest value so that the graph is 

still connected. ISOMAP then determines the low-dimensional embedding of this graph by 

computing the eigensystem of the matrix defined by the geodesic distances inferred from 

that graph. In doing so, it preserves the neighbourhood relationship of the graph, i.e., image 

regions with similar morphometry are in close proximity in the low dimensional space. 

According to [10], we automatically set the dimension of this space so that at least 90% of 

the original information is conserved, which we approximate by the normalized 
compactness, i.e., the sum of first nRV over the sum of all eigenvalues.

(5) Derive Discriminating Encoding

We further reduce the dimension of the encoding by accounting for the importance of 

individual coordinates in distinguishing the diseased from the healthy population. We do so 

by concatenating the coordinates of the LV and RV for each image and then apply mRMR 

[9] to the corresponding vectors across all images. mRMR keeps those coordinates that have 

the highest relevance with respect to separating the two populations while simultaneously 

minimizing the dependency between these coordinates. We automatically set the number of 

selected coordinates nS via parameter exploration, i.e., we measure the accuracy of the 

encoding on a training data set with respect to 20,40,60 and 80% of the combined 

coordinates (nLV + nRV) and then choose the dimension that achieved the highest accuracy 

score. An example of an accuracy score is that of a classifier identifying diseased scans 

based on the encoding. Having determined the reduced dimension, we now defined a low-

dimensional encoding of the morphometry of the input image, which is optimized towards 

encoding morphometric patterns distinguishing diseased from healthy populations.

This completes our description of the encoding of cardiac morphometry. We note that all 

important parameters are automatically determined by our morphometric framework. Thus, 

applying our encoding to a new data set is fairly simple assuming the segmentation of the 

template scan exist.
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3. MEASURING THE ENCODING’S ACCURACY

We measure the accuracy of our mophometric encoding with respect to a linear SVM 

classifier [11] distinguishing normal MRIs from those with cardiac diseases on three 

different data sets. All data sets contain the same 9 healthy subject scans. The remaining 15 

scans in each set are of patients diagnosed with different diseases, which are Tetrology of 

Fallot (TOF) for the 1st set, Hypertrophic Cardiomyopathy (HCM) for the 2nd set, and 

Diastolic Dysfunction (DD) for the 3rd set. The medical literature (using volumetric scores) 

views TOF and HCM as diseases impacting the anatomy, while DD is characterized by 

Doppler velocity parameters. We therefore expect DD to be more difficult to detect via 

morphometric encodings. The MRIs of all data sets were acquired as part of standard 

clinical care at the Hospital of the University of Pennsylvania based on the following 

protocol: balanced steady-state-free-precession short-axis 1.5 Tesla acquisition, breath hold, 

1.25 mm in-plane resolution, and 8 mm slice thickness. The fully automatic pre-processing 

of each MRI included anonymization, identifying the center of the LV in each slice via 

Hough transform [12], correcting for slice misalignment by stacking the slices so that the LV 

center aligned across the slices, correcting for bias field via N4ITK [13], keeping the 12 

slices centered at the mid-portion of the ventricles and cropping each of those slices to a 

150mm × 150mm image centered around the heart. The remainder of this section describes 

the experimental setup and results in further detail, showing that our encoding outperforms 

ventricular volume scores and RAVENS [6], both of whom not only require a segmentation 

of the template but also of each scan to be analyzed.

To fully parametrize our encoding, GRAM (Step 1) selects a (healthy) template from 100 

MRI with the parameter setting defined in [10]. We then measure the accuracy of our 

encoding by applying the classifier to the three data sets via leave-one-out cross validation, 

i.e. we repeatedly train on 23 cases and test on one case until the method was tested on the 

complete data set. During training, we not only fix the size k of the neighborhood of the 

graph and the number of embedding coordinates (varying between 2 and 12 for each 

ventricle and between 5 and 22 for each data set) according to the criteria defined in Step 4 

but also use parameter exploration to choose the optimal number of selected coordinates nS 

of mRMR (see Step 5). We score each setting of nS based on five-fold cross validation on 

the training data set of a linear SVM classifier. During five-fold cross validation, we also 

find the optimal penalty C of the classifier by exploring the search space {2−3, 2−1, …, 27}. 

With the exception of the template segmentation, all important parameters are thus 

automatically determined during training.

Measuring the accuracy of the other two encodings follows the same mechanism. However, 

those encodings require the segmentations of the LV and RV for each subject, which were 

semi-automatically generated by an expert. In addition, the volume scores of LV and RV are 

directly fed into the SVM (i.e., without manifold learning and mRMR), whose outcome we 

refer to as ‘Volume’. Finally, we replace our high-dimensional encoding of Step 3 with those 

of RAVENS maps [6] and refer with RAVENS to the outcome of the corresponding 

implementation.
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The results of the experiments are summarized in Table 1. As expected, Volume receives the 

lowest accuracy scores out of the three encodings. While its score for TOF and HCM is 

75%, the accuracy drops down to 62.5% for DD. These are in-line with the clinical findings 

that TOF and HCM typically impact the size of ventricles while DD affects cardiac function. 

The accuracy scores of RAVENS are at least 4% higher than those of Volume (see TOF). 

Our encoding receives the same specificity as RAVENS for TOF and DD, and the same 

sensitivity as Volume for DD. It clearly outperforms the other encodings with respect to all 

remaining scores. The highlight is a 91.7% accuracy for HCM. These results indicate that 

the variability introduced by the segmentations negatively impacts the accuracy of the 

morphometric encodings such as RAVENS. For DD, both deformation-based encodings 

achieve the largest gain in accuracy compared with Volume (< 12%). This indicates that DD 

not only impacts the cardiac function but also the shape. However, the shape changes due to 

DD are subtle so that the global volume scores are insensitive to those changes.

To follow up the previous findings, we investigate the impact of a disease on either ventricle 

by recording in Table 2 the average number of embedding coordinates selected by mRMR 

with respect to each ventricle and deformation-based encoding. Regardless of the encoding, 

mRMR clearly finds the coordinates of one ventricle to be more informative for disease 

identification, i.e. the RV for TOF and the LV for HCM and DD. These findings are also in-

line with the medical diagnosis of these diseases. Quite striking is the difference in the 

combined average number of selected coordinates with respect to each encoding and 

disease. While for RAVENS, the total varied quite a lot (low: 2.2, high: 4.6), the spread was 

much smaller for our encoding (low: 3.5, high: 4.1). This spread could indicate the 

robustness of an encoding (with smaller spreads being better) but confirming this notion 

would require additional experiments. We end the experiment by qualitatively assessing the 

outcome of the SVM classifiers based on our encoding. The first row of Figure 2 shows the 

most extreme cases of each population, i.e., the cases farthest away from the decision 

boundary defined by SVM. The second row lists the borderline cases closest to the 

boundary. The borderline cases for TOF and DD look very similar to a healthy one, where 

the borderline HCM shows the thickening of the myocardium. This explains why our 

encoding achieved the highest accuracy for HCM. As expected, the most healthy case (first 

row) looks very similar to the borderline scan of the same population. For the other 

populations, the extreme cases are quite different from the borderline images. The extreme 

TOF case clearly shows the enlargement of the RV and the myocardium is very thick in case 

of the extreme HCM case. In case of DD, the size of the ventricles compares to healthy 

cases. The low score of Volume is thus not surprising. Unlike for HCM and TOF, we did not 

find a disease-specific morphometric patterns for DD cases further away from the boundary. 

This reflects the notion that DD is primarily a disease impacting the function of the heart. 

We also note that misclassified test cases were always close to the boundary. If these 

findings persist on larger data sets of HCM and TOF then this distance could indicate the 

degree of impact by those diseases.

4. CONCLUSION

We described a fully-automatic morphometric encoding targeted towards differentiating 

diseased from healthy cardiac MR scans. Unlike previous deformation-based scores, we 
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only require the segmentation of a single template MRI. In addition, we reduced the 

encoding to those dimensions most informative for separating populations. Compared with 

volumetric scores and RAVENS, our measurements were more accurate in encoding 

morphometric patterns distinguishing healthy subjects from those with Tetralogy of Fallot, 

diastolic dysfunction, and hypertrophic cardiomyopathy.
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Fig. 1. 
Steps for automatically creating disease sensitive encoding of images: (1) register template 

to image via FLOOR [7], (2) embed the resulting deformation map into the low-dimensional 

manifold embedding via ISOMAP [8], (3) select the embeddings distinguishing health from 

diseased scans via mRMR [9].
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Fig. 2. 
Plotting scans according to their distances to SVM’s decision boundary. The first row shows 

cases furthest away from the boundary and the second row shows the closest ones. The 

borderline TOF and DD look similar to the healthy cases.
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