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Abstract

A variety of regression schemes have been proposed on images or shapes, although available 

methods do not handle them jointly. In this paper, we present a framework for joint image and 

shape regression which incorporates images as well as anatomical shape information in a 

consistent manner. Evolution is described by a generative model that is the analog of linear 

regression, which is fully characterized by baseline images and shapes (intercept) and initial 

momenta vectors (slope). Further, our framework adopts a control point parameterization of 

deformations, where the dimensionality of the deformation is determined by the complexity of 

anatomical changes in time rather than the sampling of the image and/or the geometric data. We 

derive a gradient descent algorithm which simultaneously estimates baseline images and shapes, 

location of control points, and momenta. Experiments on real medical data demonstrate that our 

framework effectively combines image and shape information, resulting in improved modeling of 

4D (3D space + time) trajectories.

1. INTRODUCTION

Analysis of longitudinal data incorporating both spatial and temporal information is essential 

for various clinical tasks such as predicting patient outcome and measuring efficacy of 

different therapeutic strategies. A crucial tool for longitudinal analysis is regression of 

observed data, which enables interpolation to generate continuous evolution models as well 

as extrapolation to predict future observations. Regression models are also necessary for 

conducting population studies comparing the change trajectories of different subjects.

In medical imaging, it is important to consider image data in anatomical context, which 

motivates regression on image and shape data in different combinations (a multi-object 

complex). A variety of regression schemes have been proposed on images or shapes, 

although available methods do not handle them jointly. For example, the extension of kernel 

regression for image data [1] or piecewise linear regression for time series of images [2] and 

shapes [3]. Combining intensity and geometric information has been explored for 

registration [4].
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To conduct statistical analysis on 4D (3D space + time) data, it is particularly useful to 

consider compact generative regression models which have low number of parameters 

situated at only one chosen time point. Geodesic regression is such a model and is fully 

characterized by baseline images and shapes (the intercept) and the tangent vector defining 

the geodesic at the baseline objects (the slope). Geodesic regression frameworks for images 

[5, 6] and for shapes [7] have been proposed using the LDDMM setting. However, no notion 

of how to combine images and shape data is provided.

We propose a novel geodesic regression framework that leverages image and shape data 

together to estimate a single deformation of the ambient space. We use the currents 

representation for geometric data that allows flexible representation of a wide variety of 

shape objects such as point sets, curves, or surface meshes, without the need for point 

correspondence between shapes. Compared to image regression alone, shape data provides 

anatomical information that constrains the regression, especially in cases where images have 

low contrast, by placing larger weights on regions with anatomical importance. Compared to 

shape regression alone, image information provides data in areas where segmentations are 

not available, as well as providing context to regions surrounding anatomical objects. Our 

framework uses the control-point parameterization of geodesic flows introduced in [8], 

which makes the parameterization of the deformation independent from the data. This 

allows us to keep a reasonable dimension of the parameterization, which is determined by 

the complexity of anatomical changes in time, and not the sampling of the data. We 

therefore combine image and shape data without introducing a complexity overhead.

2. METHODOLOGY

We perform regression on observed time-series data of images Ii and shapes Xi, each 

acquired at time-point ti. Shape data may consist of a mix of point sets, curves, or surface 

meshes where all vertices are concatenated into one vector Xi.

We use the control point formulation of [8] to generate geodesic flows of diffeomorphisms. 

Let S0 = {c0,k, α0,k} be a set of momentum vectors α0,k attached to control points c0,k 

distributed in the image domain. Geodesic flows are computed by evolving control points 

and momenta by integrating the following Hamiltonian equations over the time interval of 

interest:

(1)

with initial conditions ck(0) = c0,k and αk(0) = α0,k (assuming starting time-point to be 0), 

and K is a Gaussian kernel with variance  which controls the spatial scale of deformation. 

For simplicity, we write these equations as Ṡ(t) = F(S(t)) with S(0) = S0. The convolution of 

the momenta defines the following time-varying velocity field: 

 for any point x in the domain. The velocity is used to deform 

the domain: a particle at point x at time 0 moves to ϕ(t, x) at later time t, where ϕ(t, x) 
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follows the integral curve of  starting with ϕ(0, x) = x. In this 

formulation, the velocity of the particle is given by the field v(t, .) at its current location. It 

has been shown in [9] that for all t, ϕ(t, .) is a 3D diffeomorphism.

Following this model, the vertices of a given baseline shape complex concatenated into a 

vector X0 move at time t to X(t) = ϕ(t, X0), which satisfies the ordinary differential equation 

(ODE): Ẋ(t) = v(t, X(t)) with X(0) = X0. To make explicit the dependency of the equation of 

motion on S(t), we write it as: Ẋ(t) = G(X(t), S(t)).

A given baseline image I0 is also deformed by the flow of diffeomorphisms and its trajectory 

is given as I(t) = I0 ∘ ϕ(t, .)−1. The inverse flow satisfies the equation 

. For the sake of simplicity, we denote Y (t, .) = ϕ(t, .)−1, a L2 

function that maps the point x to its position at time t under the inverse flow ϕ−1(t, x). This 

maps satisfies Ẏ(t, .) = −dY (t, .)v(t, .) = H(Y (t, .), S(t)), where we make explicit the 

dependency on S(t). At time t, the intensity of the warped baseline image at voxel position x 

is given by I(t, x) = I0(Y (t, x)) using 3D interpolation.

A conceptual overview of our framework is shown in Fig. 1 where regression is performed 

by minimizing the overall distance between the observations and the deformed baseline 

objects (shapes and/or images). Let d(X(ti), Xi) be a metric between the deformed baseline 

shape complex X0 at time ti and the data shape complex Xi. This metric may be a weighted 

sum over each component of the shape complex of the currents metric between sets of 

curves or surface meshes. This term essentially depends on X(ti) and is denoted A(X(ti)). 

Similarly, we have a metric d(I(ti), Ii) denoted as B(Y (ti, .)) that is the sum of squared 

differences between the deformed baseline image I0∘ Y (ti, .) and the observed image Ii.

The geodesic regression problem amounts to finding the deformation parameters S0 and 

baseline anatomical configuration (I0, X0) such that the following criterion is minimized:

(2)

subject to

(3)

where the regularizer  is the squared norm of initial 

velocity and weights on image and shape matching λIti
 and λSti

.

As shown in the supplemental material (www.cs.utah.edu/~jfishbau/docs/

isbi2014_eqns.pdf), the gradient is computed by integrating 3 linear ODEs with source 

terms from final time-point Tf back to time-point 0:
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with

with final conditions η(Tf) = θ(Tf) = ξ(Tf) = 0.

The vector η is same size as X0, which brings back to time t = 0 the gradients of the data 

matching terms, and is used to update the position of the vertices of the baseline shape 

complex. Similarly θ is of the same size as Y (0, .) (an image of vectors in practice) which 

integrates the successive gradients of the image matching terms that acts as jumps in the 

differential equation. Finally, ξ is a variable of the same size as S0 which is used at time t = 

0 to update the deformation parameters (the position of the control points and their 

momentum vectors). The gradient with respect to the baseline image involves the splatting 

of the current residual images at positions Y (ti, .) as done in [8].

3. RESULTS AND DISCUSSION

Pediatric Brain Development

We explore the impact of joint image and shape regression in modeling pediatric brain 

development. The data consists of T1W images of the same healthy child observed at 6, 12, 

and 25 months of age. Regression on images alone is difficult in this case due to the very 

low contrast in the 6 month old image. Despite the low contrast, tissue segmentations can 

still be reliably and consistently estimated [10]. We estimate a geodesic model using only 

T1W images and a model jointly on images and white matter surfaces to emphasize the 

development of the tissue interface. We initialize 120 control points on a regular grid with 

the deformation kernel σV = 20 mm. Finally, due to limited contrast at 6 months, we 

estimate the baseline at 25 months and follow the evolution backwards in time.

The results of geodesic regression are shown for several snapshots in time in Fig. 2. The 

model estimated using only images mostly captures the scale change, but does not capture 

much deformation in the interior of the brain. The model estimated jointly on image and 

shape captures more detailed development as white matter stretches and expands.

Neurodegeneration in Huntington’s Disease

Next, we investigate the application of joint image and shape regression to Huntington’s 

disease (HD) where accurate 4D models are needed to measure the effectiveness of therapies 

or drug treatments. In HD, degeneration of the caudate has been shown to be significant 
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[11]. Here we explore T1W image data from a single patient diagnosed with HD scanned at 

58, 59, and 60 years of age. Sub-cortical structures are segmented, manually verified, and 

cleaned. Models are estimated using only T1W images as well as T1W images plus caudate 

surfaces. Control points are initialized on a regular grid with 10 mm spacing with kernel σV 

= 10 mm.

The trajectory of caudate volume extracted after regression is shown in Fig. 3. The model 

estimated from images alone fails to capture the volume loss observed in both caudates, and 

rather, shows an increase in right caudate volume. By incorporating caudate shape data in 

model estimation, we are able to capture the shrinking of the caudates. The corresponding 

expansion of the ventricles is also captured, shown in Fig 4, due to the inclusion of imaging 

data. By incorporating shape and image information jointly, we are able to model both the 

expansion of the ventricles and the degeneration of the caudates. Accurate models of change 

are essential when extrapolating beyond the observation time interval, which can provide 

insight into disease progression.

Conclusions

We presented a novel geodesic regression framework that jointly considers image and shape 

information in the LDDMM framework, where dense diffeomorphisms are built using a 

control point formulation. This formulation decouples deformation parameters from input 

object parameters (e.g., voxels, surface points) providing greater flexibility and consistency 

in mapping different object types across time. Our regression model seamlessly handles 

images and multi-object complexes consisting of points, curves, and/or surfaces in different 

combinations. Experiments show that our framework effectively combines image and shape 

information to estimate a single deformation of the ambient space, resulting in improved 

modeling of 4D trajectories.
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Fig. 1. 
Conceptual overview of geodesic regression on multi-object complexes containing both 

image and shape data. The framework estimates parameters at t = 0 which consist of the 

baseline image I0 and shape X0 along with the deformation model parameterized by control 

points c0 and initial momenta α 0 such that overall distance between the deformed objects 

and the observations are minimal.
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Fig. 2. 
Images and deformations estimated by geodesic regression using images alone (top) and 

jointly on images and white matter surfaces (bottom). Regression jointly on image and shape 

results in a more realistic evolution which captures detailed changes in brain tissue in 

addition to the increase in brain size. In both cases, geodesic regression was estimated 

backwards in time.
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Fig. 3. 
Caudate volume extracted continuously after regression compared to observed caudate 

volumes (circles and x’s). Volume is measured continuously from the modeled shape 

trajectories, not fitted to discrete volume measurements. The model estimated on images 

alone fails to capture the volume loss. Evolution of caudates for the image only model is not 

estimated, but instead we shoot the baseline caudate shapes along the geodesic estimated 

from images alone. Note: measurements extracted continuously from non-linearly 

deforming shapes can produce either linear or non-linear trends with no prior assumption of 

linearity.
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Fig. 4. 
Top) Evolution estimated on images alone. Evolution of caudates are not estimated, but 

instead we shoot the baseline caudate shapes along the estimated geodesic. Bottom) 
Evolution estimated jointly using images and caudate shapes. Regression on images alone 

results in a slight expansion of ventricles, but does not capture the shrinking of caudates. 

Our method is able to capture both the expansion of ventricles and the shrinking of caudates.
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