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ABSTRACT

The assessment of surgical skills is an essential part of medi-
cal training. The prevalent manual evaluations by expert sur-
geons are time consuming and often their outcomes vary sub-
stantially from one observer to another. We present a video-
based framework for automated evaluation of surgical skills
based on the Objective Structured Assessment of Technical
Skills (OSATS) criteria. We encode the motion dynamics
via frame kernel matrices, and represent the motion granu-
larity by texture features. Linear discriminant analysis is used
to derive a reduced dimensionality feature space followed by
linear regression to predict OSATS skill scores. We achieve
statistically significant correlation (p-value <0.01) between
the ground-truth (given by domain experts) and the OSATS
scores predicted by our framework.

Index Terms— OSATS, motion texture, surgical skill,
video analysis

1. INTRODUCTION

Developing high quality surgical skills is a time-consuming
process, requiring expert supervision and evaluation through-
out all stages of the training procedure. This manual assess-
ment of surgical skills poses a substantial resource problem
to medical schools and teaching hospitals. In addition, the as-
sessment criteria used are typically domain specific and often
subjective where even domain experts do not always agree on
the assessment scores (inter-observer variability).

Structured manual grading systems, such as the Objective
Structured Assessment of Technical Skills (OSATS) [1], rep-
resent the gold standard for (manual) assessments of surgical
skills aiming for alleviating the problem of subjective assess-
ments. In this work, we propose a framework for automated
assessment of OSATS criteria using video data to alleviate the
manual observation requirements and provide objective skill
assessments for (prospective) surgeons. Figure 1 shows sam-
ple frames from our video dataset. By using video data, the
system has minimal requirements of the infrastructure, which
is of benefit for large scale deployments.

Automated assessment of surgical OSATS is challenging
due to several reasons. First, the OSATS criteria are diverse

in nature (Table 1). For example, the “respect for tissue” cri-
terion is based on the trainee’s capability in handling the tis-
sue without injuring it. On the other hand, criteria such as
“knowledge of procedure” and “time and motion” depend on
the trainee’s knowledge and orderly task execution. Thus, it is
very challenging to encode motion dynamics corresponding
to diverse OSATS criteria within a common framework and
the task is further complicated by the style variations among
surgeons in performing different procedures.

To extract skill relevant information, first we encode the
motion dynamics in the videos into frame kernel matrices [2].
We observed that the patterns in the frame kernel matrices
vary according to the skill level of the subject. To extract skill
relevant information from these patterns, we compute texture
features from the frame kernel matrices. Our approach thus
enables encoding of motion dynamics into texture features.

We obtained statistically significant correlation between
the expert and predicted OSATS scores. With encouraging
results, we envision our system to be potentially useful for
evaluating medical students in their early training phases.

2. RELATED WORK

There are two domains where assessment of surgical skills
has been studied. The first one pertains to skill assessment
of surgeons performing robotic minimally-invasive surgery
(RMIS). The second domain is assessment of skills in med-
ical schools and teaching hospitals. The state-of-the-art in
computerized surgical skill evaluation is dominated by RMIS
using robots such as da-Vinci [3–5]. In most of the RMIS
works, the analysis goal is the automatic recognition of sur-
gical gestures using robotic kinematic data. Very few works
have addressed the automated OSATS score prediction. Datta
et al. [6] defined surgical efficiency score as the ratio of OS-
ATS “end product quality score” and the number of detected
hand movements. Their results indicate significant correla-

Fig. 1. Sample video frames showing surgical suturing task



Table 1. Summary of OSATS scoring system [1].
Score Respect for tissue

(RT)
Time and motion

(TM)
Instrument

handling (IH)
Suture handling

(SH)
Flow of operation
(FO)

Knowledge of
procedure (KP)

Overall perfor-
mance (OP)

1 Caused tissue
damage

Unnecessary
moves

Inappropriate in-
strument use

Poor knot tying Seemed unsure of
next move

Insufficient
knowledge

Very poor

2 – – – – – – –
3 Occasionally

caused damage
Some unneces-
sary moves

Occasionally stiff
or awkward

Majority of knots
placed correctly

Some forward
planning

Knew all impor-
tant steps

Competent

4 – – – – – – –
5 Minimal tissue

damage
Economy of
movement

Fluid movements Excellent suture
control

Planned opera-
tion

Familiarity with
all steps

Clearly superior

Note that the score is a Likert scale from levels 1-5 but the guidelines are provided only for levels 1, 3, and 5. The diversity of the criteria, lack of guidelines for all levels,
and the need to manually observe each surgeon, makes the manual OSATS scoring a time consuming and challenging task.

tions between the overall OSATS rating and the surgical effi-
ciency. However, they did not correlate the hand movements
to individual OSATS criteria.

With advances in video data acquisition, the attention has
shifted towards video based analysis in both RMIS and teach-
ing domains [4,5,7]. Haro et al. [4] and Zapella et al. [5] used
linear dynamical systems (LDS) and bag-of-features (BoF)
for surgical gesture (surgeme) classification in RMIS surgery
using both video and kinematic data. Most of the video based
works have reported surgical gesture recognition with few
works on surgical skill classification [7]. However, the auto-
mated video-based prediction of OSATS scores has not been
reported in the published literature.

In this work, we demonstrate that motion texture analysis
can be effectively used for prediction of OSATS skill scores.
Our results on a diverse data collected in a general surgical
lab setting indicate the potential of our framework for OSATS
score prediction in medical schools and teaching hospitals.

3. APPROACH

Figure 2 gives an overview of the proposed procedure. The
input to the system is a video recording of a trainee surgeon
performing suturing procedure and the output is the predicted
skill scores corresponding to the seven OSATS criteria. In the
following, we will discuss the technical details of the devel-
oped framework.

Encoding motion dynamics into frame kernel matri-
ces: A frame kernel matrix defines the similarity between
two frames using a kernel function. Frame kernel matrices
provide a suitable representation to encode the skill relevant
motion dynamics because mapping of data points to the ker-
nel feature space ensures that the motion dynamics depend
only on the relative locations of the data points with respect
to each other and not on the global origin. In addition, ex-
pert motions are more organized, distinct and uncluttered [3],
and they are expected to yield well-organized patterns in the
frame kernel matrix as compared to the non experts.

Let X ∈ Rd×n be a d-dimensional time series of length n,
then the frame kernel matrix K is given by K = φ(X)Tφ(X),
where each entry in K, κij defines similarity between two
frames xi and xj using a kernel function φ(xi)Tφ(xj). We

use the Gaussian kernel function, κij = exp(−‖xi−xj‖2
2σ2 ),
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Fig. 2. Framework for skill assessment using motion texture analysis.

where σ is the standard deviation. The parameter σ controls
the flexibility of the kernel. Small values of σ tend to make
the kernel matrix close to an identity matrix. Large values of
σ result in a constant kernel matrix. In general, σ is selected
empirically to avoid these extremes. We obtain the frame ker-
nel matrices from videos using Algorithm 1.

Algorithm 1 - Frame kernel matrices from videos
Require: Surgical videos in set V

Step 1: ∀v ∈ V , compute STIPs (spatio-temporal interest points) and
162-element HoG-HoF (histogram of oriented gradients-histogram of
optical flow) descriptors [8].
Step 2: Cluster STIPs from two experts by applying k-means (k=5) to
HoG-HoF features. We select k=5 since we expect approximately five
moving entities in the videos: surgeon’s two hands and the three instru-
ments (forceps, needle-holder, and scissors).
Step 3: Assign STIPs for remaining videos to the k clusters learnt in step
2 using minimum Mahalanobis distance.
Step 4: Compute motion class counts, X, for each of the k clusters.
Each entry in theN ×k motion class count matrix X, x(n, q) represents
the number of STIPs belonging to the nth frame and the qth cluster,
where N is the number of frames in the video.
Step 5: Compute the frame kernel matrix K.

K = φ(X)Tφ(X)
Each entry in K, κij , defines similarity between two frames xi

and xj using a kernel function φ(xi)Tφ(xj).

κij = exp(− ‖xi−xj‖
2

2σ2 ) where σ is the standard deviation. We
set σ to be the average distance from 20 percent of the closest neighbors
resulting in textured frame kernel matrices.

Computing motion texture features: We compute texture
features from frame kernel matrices to encode motion dynam-
ics in our surgical videos. To test our concept of revealing
skill relevant features via motion texture analysis, we use two
techniques for texture analysis – Gray Level Co-occurrence
Matrix (GLCM) [9], and Local Binary Pattern (LBP) [10].



We employ Ng ×Ng GLCM, calculated for Ng gray lev-
els and eight directions (0◦−360◦ in steps of 45◦) at a spatial
offset of 1 pixel. We compute twenty texture features after
averaging and normalizing over the GLCM. These features
are [9,11,12]: Autocorrelation, Contrast, Correlation, Cluster
prominence, Cluster shade, Dissimilarity, Energy, Entropy,
Homogeneity, Maximum probability, Sum of squares vari-
ance, Sum average, Sum variance, Sum entropy, Difference
variance, Difference entropy, Information measure of corre-
lation 1, Information measure of correlation 2, Inverse differ-
ence normalized, and Inverse difference moment normalized.
For LBP, we use the Local Configuration Pattern (LCP) with
rotation invariant Local Binary Patterns (LBP) as patterns of
interest for the LCP [10]. We use the multi-scale LBP-LC ap-
proach with different neighborhood and radius values to cap-
ture the motion dynamics at different granularity.

OSATS prediction: We test our framework for predicting
OSATS score in a leave-one-out cross validation (LOOCV)
scheme. After obtaining textural features using the GLCM
and LBP-LC methods, we create a linear regression model
using the training data for each OSATS criteria. First, we
use Linear Discriminant Analysis (LDA) to find a lower-
dimensional feature space in which three (grouped based
on OSATS range) skill levels in training data can be dis-
criminated. This provides a discriminating two-dimensional
feature space which can be used to predict the skill score of
test data. For LDA, we group the training data into three skill
levels: low (OSATS score ≤ 2), intermediate (2 < OSATS
score ≤ 3.5) and high (3.5 < OSATS score ≤ 5). A linear
regression model is obtained using the two dimensions in the
reduced LDA feature space.

To predict OSATS scores of a test sample, the test fea-
tures are first projected to the LDA space learnt during train-
ing. The reduced test features are then used to predict the
score using the regression function obtained during the train-
ing. To evaluate the efficacy of our framework, we calculate
the normalized root mean square error (NRMSE) given by,

NRMSE =
√∑

(yn−ŷn)2∑
(yn)2

where yn is the ground truth skill
score and ŷn is the predicted skill score of the nth sample. We
also compute the Pearson correlation coefficient R and the
corresponding p value between the true and predicted scores.

4. RESULTS AND DISCUSSION

Surgical video data: We recruited 16 participants (medical
students) for our case study. Previous suturing expertise and
background of the participants varied. Every participant per-
formed suturing activities involving tasks such as stitching,
knot tying, etc. using a needle-holder, forceps and the sili-
cone suture pads. These training sessions were recorded us-
ing a standard video camera (50fps, 1280×720 pixels), which
was mounted on a tripod. Fifteen participants performed two
sessions of a suturing task. An expert surgeon also performed
three sessions giving a total of thirty-three videos. The aver-

(a) (b) 

Fig. 3. (a) Detected STIPS in a sample frame represent the moving objects
in the scene, (b) STIPs classified into distinct motion classes.

Fig. 4. Top row: Motion class counts for a novice (left), and an expert
(right) surgeon. The five classes are plotted at an offset on y axis for clarity.
Note that the novice motions exist in almost all frames for all motion classes
as compared to fewer motion for expert surgeon. The plots correspond to a
single suturing and knot tying task and demonstrate that experts use fewer
motions than novices as reported in [6]. Bottom row: Frame kernel matrices
corresponding to motion class counts in top row.

age duration of the videos is 18 minutes. Ground truth assess-
ment was provided by the expert surgeon based on the OSATS
scoring scheme on a scale of [1-5].

Skill relevant motion dynamics: Figure 3 shows the de-
tected STIPs and motion classes in a sample frame. Figure 4
(top row) shows the time frequency counts for five motion
classes. It is clear that the pixel intensity transitions in the
frame kernel matrices (Figure 4, bottom row) correspond to
motion dynamics and vary according to the skill level of the
surgeon. Thus, frame kernel matrices provide a suitable rep-
resentation to encode skill relevant motion.

OSATS prediction: Figure 5 shows the prediction results
for three OSATS criteria using LBP-LC features. Similar re-
sults were obtained for other 4 criteria using LBP-LC fea-
tures. Table 2 shows the NRMSE and correlation coefficient
R between the ground truth and the predicted OSATS criteria
using LBP-LC and GLCM features at different texture gran-
ularity. Multi-scale LBP-LC features resulted in high corre-
lation between the true and predicted scores (Table 2, column
4). We also achieved significant correlation with GLCM fea-
tures for several OSATS criteria, however, overall better per-
formance was achieved with LBP-LC features.

5. SUMMARY AND CONCLUSION

We proposed a video based automated framework for surgical
OSATS score prediction in training scenarios using silicone
suture pads. Our approach does not involve manual gesture



Fig. 5. Top left: Single instance prediction for OSATS criterion TM in
LOOCV scheme. Note the separation of experts (green diamonds), interme-
diates (blue squares) and novices (red circles) in the LDA feature space. The
true score is marked with a circle. The colormap corresponds to predicted
scores obtained by linear regression. True vs. predicted scores with best fit
for OSATS criteria – RT (top right), TM (bottom left), and IH (bottom right).

segmentation. We achieve high correlation between ground
truth and predicted OSATS for diverse criteria on videos cov-
ering varying skill levels. We plan to extract motion features
from surgeon’s hands to discount other background motions
(e.g. moving tissues) and to provide dexterity feedback.

An additional future research direction comprises the in-
corporation of alternative sensing modalities. For example,
accelerometry, with its substantially higher temporal resolu-
tion, has the potential of focusing even more on finer-grained
details of surgical procedures, which is important for the as-
sessment of a number of OSATS criteria such as “time and
motion” or “flow of operation”. A few approaches exist that
focus on accelerometry based skill assessment (e.g., [13].
These alternative modalities would need, however, modified
feature extraction approaches to capture the essentials of the
underlying data (e.g., [14]).

Table 2. OSATS prediction using motion texture features
Criteria Texture feature NRMSE R

RT {N12(r2) N10(r4) N8(r8)} 0.16 0.65∗∗

TM {N8(r2) N8(r4) N8(r8)} 0.20 0.81∗∗

IH {N8(r2) N8(r4) N8(r8)} 0.22 0.79∗∗

SH {N12(r2) N10(r4) N8(r8)} 0.26 0.67∗∗

FO {N12(r2) N10(r4) N8(r8)} 0.19 0.71∗∗

KP {N8(r2) N8(r4) N8(r8)} 0.24 0.68∗∗

OP {N8(r2) N8(r4) N8(r8) N10(r2)} 0.17 0.82∗∗

RT Ng = 64 0.26 0.45∗∗

TM Ng = 128 0.34 0.56∗∗

IH Ng = 8 0.30 0.56∗∗

SH Ng = 128 0.39 0.43∗

FO Ng = 128 0.36 0.33
KP Ng = 128 0.49 0.45∗∗

OP Ng = 64 0.31 0.52∗∗

“∗∗” refers to p value< 0.01, “∗” refers to p value< 0.05, Ni(rj ) represents
the LPB-LC feature evaluated for neighborhood size i around the radius j,
Ng refers to the number of gray levels used to compute the GLCM matrix.
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