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SPLIT-BREGMAN-BASED GROUP-SPARSE RECONSTRUCTION OF MULTIDIMENSIONAL
SPECTROSCOPIC IMAGING DATA

Brian Burns?, Neil Wilson†, M. Albert Thomas?†

? Department of Biomedical Engineering, UCLA, Los Angeles, CA 90025 USA
†Bio-Medical Physics IDP, UCLA, Los Angeles, CA 90025 USA

ABSTRACT
4D Magnetic Resonance Spectroscopic Imaging data pro-
vides valuable biochemical information in vivo, however, its
acquisition time is too long to be used clinically. In this paper,
4D phantom MRSI data are retrospectively under-sampled
4X, 6X, and 8X then reconstructed with Compressed Sensing
and Group Sparsity. A derivation for the Group Sparse prob-
lem solution within the Split-Bregman framework is provided
which allows for arbitrary, over-lapping groups of transform
coefficients. Results show that Group Sparse reconstruction
with over-lapping groups is more accurate at each under-
sampling rate than Compressed Sensing reconstruction with
superior peak line-shape and amplitude reproduction. The ac-
celeration factors used in these experiments could potentially
reduce scan times from 40 minutes to 5 minutes.

Index Terms— Group Sparsity, Compressed Sensing,
Split Bregman, Convex Optimization, Spectroscopic Imaging

1. INTRODUCTION
Magnetic Resonance Imaging (MRI) exploits the resonant
frequency of 1H protons within water in vivo to generate
anatomical images of the human body. Magnetic Resonance
Spectroscopic Imaging (MRSI) is a similar imaging tech-
nique to MRI, however in lieu of the resonant frequency of
1H protons in water, the resonant frequencies of 1H protons in
metabolites are used to generate a metabolic image instead.
Each metabolites has a unique resonance spectrum in vivo
caused by their molecular bonding structure, which can be
used to identify and quantify their concentrations within each
voxel. Using this concentration information, the biochemical
compositions of healthy and diseased tissues can be deter-
mined without the need for invasive biopsies and the altered
metabolism of cancers can be detected [1].

The Echo-Planar Correlated Spectroscopic Imaging (EP-
COSI) MRSI pulse sequence allows for the simultaneous
acquisition of two spatial and two spectral dimensions,
(ky ,kx,t2,t1), in one scan in vivo [1]. This 4D sequence
provides a 2D spectrum for each voxel in a slice. The overlap

This work was supported by: a National Institute of Health (NIH)
grant #1R21NS080649-01A1 (BLB), an IDEA Expansion grant from the
US Army Department of Defense (DOD) Breast Cancer Research Program
(BCRP)#W81XWH-10-1-0743 (MAT)

of resonance peaks within a single spectral dimension is a ma-
jor impediment to individual metabolites and the increased
spectral dispersion offered by a second spectral dimension
can disentangle complex over-lapping spectral peaks. How-
ever, 4D MRSI acquisitions are slow compared to most MRI
sequences and can take up to 40 minutes, which is too long
to be used on a routine clinical basis.

4D data EP-COSI acquisition is a rasterized scan that ac-
quires a 2D spatio-temporal plane, kx − t2, from the 4D vol-
ume during each repetition time. The second spatial (ky) and
spectral (t1) dimensions are incrementally acquired between
rasters until the entire 4D volume is sampled. ky is acquired
using standard phase encoding techniques from MRI and t1
is acquired as a series of phase shifted 1D spectra [1]. 4D
EP-COSI data acquisition can be accelerated in vivo by non-
uniformly under-sampling (NUS) the incrementally acquired
dimensions, ky and t1. However, NUS artifacts must be re-
moved by reconstructing the missing samples in the ky − t1
plane through non-linear, iterative reconstruction [2].

Previous work has demonstrated the feasibility of under-
sampling the mixed-domain ky − t1 plane of a 4D MRSI
data set and reconstructing the missing samples with Com-
pressed Sensing (CS), Total Variation (TV) denoising, and
Maximum Entropy (MaxEnt) [3, 4]. NUS rates as low as 5X
were demonstrated in vivo and showed that it is possible to
accelerate the acquisition of 4D MRSI down to a clinically ac-
ceptable 10 minutes. The current work uses the Group Sparse
(GS) reconstruction method to reconstruct phantom 4D EP-
COSI data sets at different NUS rates using Split-Bregman
iterative reconstruction [5, 6]. The Split-Bregman algorithm
has been modified to allow for arbitrary transform coefficient
groupings of overlapping or non-overlapping groups and can
successfully reconstruct 8X NUS MRSI data sets. The Split-
Bregman algorithm has been previously used for TV-based
reconstruction of NUS MRSI data [3] and for multi-channel
NUS MRI data by extending the algorithm to accommodate
row-wise grouping of jointly sparse samples [7].

2. THEORY
2.1. Split Bregman Algorithm

The Split-Bregman algorithm is from the class of Alternating
Direction Method of Multipliers (ADMM) that split a con-
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strained problem into a sequence of simpler unconstrained
sub-problems [6]. It differs from continuation-based meth-
ods by keeping the values of any Lagrange multipliers fixed
between iterations and modifies the data instead. This has the
benefits of increased numerical stability and a lower depen-
dence on the initial Lagrange multiplier values. If we wish to
use the Split Bregman algorithm to solve the problem:

minu,z E(u, z)
such that H(u, z)

(1)

where E(u, z) is a convex, non-differentiable function and
H(u, z) can be assumed to be of the form Au = z. We first
convert it to an unconstrained problem:

min
u,z

E(u, z) + λH(u, z) (2)

where conventional continuation-based methods would in-
crease λ → ∞ to find a solution; however, we apply the
Bregman distance relaxation to equation 2 and split it into
sub-problems instead. The Bregman distance for the function
E(u) at the point uk is:

Dp
E(u, u

k) = E(u)− E(uk)− 〈pku, u− uk〉 (3)

where pku is the sub-gradient of E(u) at uk. The Bregman
distance and iteration scheme are then applied to equation 2:

(uk+1, zz+1) = minu,zD
p
E(u, u

u, z, zk) + λH(u, z)
pk+1
u = pku − λ∇uH(uk+1, zk+1)
pk+1
z = pkz − λ∇zH(uk+1, zk+1) (4)

which is iterated over k until convergence. λ is never in-
creased and under fairly weak assumptions on E(u, z) and
H(u, z), ∇uH and ∇zH → 0 as k →∞ so that pk+1 → pk

and the Bregman parameters converge [6]. However, because
H(u, z) is of the form Au = z, equation 4 can be simplified:

(uk+1, zz+1) = minu,z E(u, z) + λ‖z −Au− bk‖22
bk+1 = bk +Auk+1 − zk+1

(5)
where bk+1 is a Bregman parameter that ensures Au → z as
the iterations converge without increasing λ and sacrificing
stability. Because E(u, z) is convex and non-differentiable,
equation 5 is split into u and z subproblems, which are solved
independently at each iteration, decoupling u from z:

uk+1 = minuE(u, zk) + λ‖zk −Au− bk‖22
zz+1 = minz E(uk + 1, z) + λ‖z −Auk+1 − bk‖22
bk+1 = bk +Auk+1 − zk+1

(6)
2.2. Group Sparse Reconstruction

GS reconstruction is an extension of CS that exploits the
correlations among adjacent transform coefficients caused by
their structured sparsity [5]. Structured sparsity is the ten-
dency of large transform coefficients to be adjacent to each
other and form clusters. In GS reconstruction, adjacent trans-
form coefficients are reconstructed together in groups rather

than individually, as is done in CS. By reconstructing groups
of coefficients, the GS signal model correlates individual
transform coefficients with their neighbors allowing them to
influence each other.

GS reconstruction can be formed as a constrained convex
optimization problem that uses the l1,2-norm as the objective
function instead of the l1-norm used in CS. The l1,2-norm is:

‖z‖1,2 = ‖zg1‖2 + ‖zg2‖2 + ...+ ‖zgL‖2 (7)

where zgi ∈ CP = {uj , ul...un} and j, k, n ∈ {S =
1...N, P ≤ N} is a group of transform coefficients from
u. The MRSI GS reconstruction problem is then defined as:

minu,z ‖z‖1,2
such that ‖RFu− f‖ ≤ σ

z = Gu

(8)

where u = (Y,X, F2, F1) is the reconstructed spatial,
spectral-domain data, F is the 4D Fourier operator, R is
the under-sampling mask that determines which samples
were acquired in the ky − t1 plane, f = (ky, kx, t2, t1) is the
sampled k-space, time-domain data, G is the group matrix of
1s and 0s that determines which coefficients from u belong
to each group in z [8], and σ is the standard deviation of the
noise in f . The GS problem reduces to the CS problem when
each group contains one coefficient, thus making G = I and
z = u. Because each transform coefficient may be within
more than one group and separate reconstructions must be
created for each version of that coefficient, z may contain
more points than u.

2.3. Split-Bregman Based Group Sparse Reconstruction

The GS reconstruction problem is generally considered dif-
ficult to solve due to its mixed norm structure and the non-
smooth nature of the l1,2 objective function. However, by ap-
plying Split-Bregman iterative relaxation, we can solve equa-
tion 8 for the optimal MRSI reconstruction to within the stan-
dard deviation of noise with ADMM convergence guarantees.
The MRSI GS reconstruction problem can be solved by the
Split-Bregman algorithm by first defining equation 8 as an
unconstrained problem:

min
u,z

E(u, z) + λH(u, z) (9)

where
E(u, z) = ‖z‖1,2 + µ‖RFu− f‖22
H(u, z) = ‖z −Gu‖22

(10)

By following the process defined in equations 4-6, we can
derive u and z sub-problems and a Bregman parameter update
that solves the unconstrained problem in 9:

uk+1 = minu µ‖RFu− f i‖22 + λ‖zk −Gu− bkz‖22
zz+1 = minz ‖z‖1,2 + λ‖z −Guk+1 − bkz‖22
bk+1
z = bkz +Guk+1 − zk+1

(11)
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where µ and λ are Lagrange multipliers. The zk+1 sub-
problem is non-differentiable, however, its equivalent prob-
lem can be solved:

zk+1 = minz
L∑
i=1

[
‖zgi‖2 + λ‖zgi − (Guk+1)gi − (bkz)gi‖22

]
= gshrink(Guk+1 + bkz ,

1
λ , G)

(12)
where gshrink is group-wise shrinkage over each group [8].
Because the uk+1 sub-problem is differentiable, optimality
conditions can be derived for u and simplified to:

(µF ′R′RF + λG′G)uk+1 = µF ′R′f i + λG′
(
zk − bkz

)
(13)

where G′G is a diagonal matrix with each (G′G)ii being the
number of groups that contain transform coefficient uk+1

i [8].
If each transform coefficient is in the same number of groups,
so G′G is a multiple of I , the left-hand side of equation 13 is
circulant and can be inverted by the Fourier transform:

uk+1 = F ′K−1F
(
µF ′R′f i + λG′

(
zk − bkz

))
(14)

where K = (µR′R+ λG′G) is diagonal. If each transform
coefficient is not in the same number of groups and G′G is
not a multiple of I , uk+1 in equation 13 can be solved for by
the Gauss-Seidel method or other iterative solvers for linear
systems.

Iterating the sub-problems and Bregman update over k in
equation 11 solves the unconstrained problem; however, to
solve the constrained problem in equation 8, an outer iteration
is completed over i that updates f based on changes to uk+1:

f i+1 = f i +
(
f −RFuk+1

)
(15)

The number of iterations over k is application dependent, but
for the MRSI GS problem, we use 15 iterations over k for
each iteration over i and iterate over i until the normalized
residual error between uk+1 and f i is less than 10e−6.

3. METHODS
The CS and GS reconstruction methods were compared us-
ing six fully-sampled scans of a 500mL gray matter phan-
tom, which contained in vivo concentrations of brain metabo-
lites. The scans were acquired with the volume-based 4D EP-
COSI sequence on a Siemens 3T Trio scanner using a 12-
channel head coil with the following parameters: 2x2x2 cm3

voxel size, 100 t1 increments, TR/TE/averages = 5s/23ms/1,
32x32cm2 FOV, 256 time points along the t2 readout, and
spectral bandwidths of 1250Hz and 1190Hz along F1 and F2,
respectively. Standard phase corrections and channel com-
bination were applied to each scan, with no baseline correc-
tions used. They were apodized using a sine-squared filter
along t1, and a skewed sine-squared filter with skew parame-
ter 0.5 along t2. Following phase correction and apodization,
the fully sampled scans were retrospectively under-sampled
4X, 6X, and 8X along the ky − t1 plane using masks gener-
ated by the 2D Poisson-gap method [4].

Separate reconstructions of each NUS phantom scan were
performed using CS and GS with non-overlapping groups
(GS1), and GS with 50% overlapping groups (GS2). The
grouping patterns were within the spectral domain and were
comprised of equal-sized groups of (F2, F1) = (8, 4) coeffi-
cients. Because the GS problem simplifies to the CS problem
with group sizes of one coefficient, (F1, F2) = (1, 1), the CS
and GS problems were solved using the same Split-Bregman
code base with different groupings.

4. RESULTS AND DISCUSSION
Figure 1 shows a select 2D COSY spectrum from the cen-
tral voxel of a 4D EP-COSI gray matter phantom scan that
was retrospectively under-sampled 8X using the mask shown
and reconstructed by CS, GS1, and GS2. The 1D projections
of the F1 and F2 dimensions are shown to the right of and
above each 2D spectrum, respectively. The spectrum from
the fully sampled phantom scan is shown in the top left of
the figure and the 8X NUS spectrum with zeros in place of
missing samples is shown to its right. The contour levels of
each spectrum are the same to allow noise levels and peak
heights to be compared between reconstructions. As can be
seen in the 8X NUS spectrum, the broad point spread function
(PSF) of the under-sampling mask caused the large diagonal
peaks of NAA, Cr, Cho, and mI to alias along the F1 dimen-
sion and obscure the much smaller NAA, Glx, mI, and Asp
cross-peaks. Because of the t1 under-sampling, the spectral
peaks shown in the fully sampled F1 projection collapsed in
the 8X NUS projection. The F1 projections of each recon-
struction method show reasonable agreement with the fully
sampled data set, indicating the peak energy of major diag-
onals, such as NAA, Cr, Cho, and mI has been deconvolved
from the broad PSF by each of the reconstructions.

There are noticeable differences among the reconstruc-
tions that should be highlighted. The noise floor of the CS re-
construction is higher than GS1 and GS2, which makes iden-
tifying cross peaks difficult. The CS reconstructed diago-
nal peaks have lost their Lorentzian line-shape and the cross
peaks are present but ”choppy” in appearance. The GS re-
construction cross peaks and diagonals are not ”choppy” in
appearance, and most of the cross peaks shown in the fully
sampled data set are easily identified. The peak amplitudes
and line shapes of the GS2 reconstructions are the most sim-
ilar to the fully sampled data set, as shown by the low am-
plitude NAA and Glx cross peaks whose complex multiplet
structures are well resolved in the bottom left of the spectrum.

Table 1 shows the mean metabolite peak RMSEs calcu-
lated over the central 4x4 voxels of the six NUS phantom
scans and reconstructions. The RMSEs were calculated over
only the metabolite peak locations in order to reduce the
effects of changes to the noise distribution [4]. The lowest
values calculated for each metabolite peak and NUS rate
are highlighted. As can be seen, the majority of highlighted
RMSEs are from the GS2 reconstructions, which indicates
that over-lapping groups may be a more reliable method of
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Fig. 1. Select 2D COSY spectra from the central voxel of a (a) fully sampled 4D EP-COSI brain phantom scan (b) 8X NUS and the (c) 8X
CS (d) 8X GS1 (e) 8X GS2 reconstructions. The 8X NUS mask is shown on the left.

metabolite peak line-width and amplitude reconstruction than
non-overlapping groups or CS reconstruction.

8X NUS CS
4X 6X 8X 4X 6X 8X

Lac 1.2 -136.5 -135.1 -134.1 -132.7 -131.6 -131.4
NAA 2.0 -108.1 -106.6 -105.5 -123.9 -120.1 -115.9
Glx 2.2 -125.2 -123.4 -122.4 -128.8 -127.5 -128.0
Cr 3.0 -110.9 -109.4 -108.3 -127.6 -123.0 -118.5
Cho 3.2 -114.2 -112.7 -111.6 -129.1 -126.0 -122.2
Cr 3.9 -115.3 -113.7 -112.6 -129.0 -125.7 -122.8

GS1 GS2

Lac 1.2 -138.5 -136.2 -135.3 -138.8 -137.0 -135.9
NAA 2.0 -122.5 -120.3 -116.4 -126.6 -122.5 -117.7
Glx 2.2 -130.9 -129.5 -127.8 -134.5 -132.1 -129.6
Cr 3.0 -126.2 -123.1 -118.6 -127.2 -123.4 -118.8
Cho 3.2 -124.0 -123.1 -120.4 -128.8 -126.1 -122.4
Cr 3.9 -129.0 -125.8 -123.0 -131.5 -127.1 -123.7

Table 1. Mean meatbolite peak RMSEs (dB) for the 4X, 6X, and
8X NUS and reconstructions calculated over the VOIs of the six 4D
EP-COSI phantom scans.The lowest RMSE per metabolite peak and
NUS rate is highlighted.

The Split-Bregman GS problem converges in fewer iter-
ations than the CS problem, but takes more time to compute
per iteration because of group-wise shrink. The current Mat-
lab implementation of GS converges in 10-15 minutes while
CS converges in 5. This is a current topic of research.

5. CONCLUSION
This preliminary work shows that GS reconstruction of 4D
MRSI data set is a viable alternative to CS-based methods.
The Split-Bregman-based GS algorithm was developed and
evaluated on six phantom data sets at different NUS rates.
The GS2 reconstruction results demonstrated better metabo-

lite peak reproduction and lower peak RMSEs than CS or
GS1. Further work is required to determine the optimal
grouping strategies under different experimental conditions.
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