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Abstract

Identification of biomarkers for early detection of Alzheimer’s disease (AD) is an important 

research topic. Prior work has shown that multimodal imaging and biomarker data could provide 

complementary information for prediction of cognitive or AD status. However, the relationship 

among multiple data modalities are often ignored or oversimplified in prior studies. To address 

this issue, we propose a network-guided sparse learning model to embrace the complementary 

information and inter-relationships between modalities. We apply this model to predict cognitive 

outcome from imaging and proteomic data, and show that the proposed model not only 

outperforms traditional ones, but also yields stable multimodal biomarkers across cross-validation 

trials.
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1. INTRODUCTION

The study of Alzheimer’s disease (AD) is experiencing an important shift from disease 

categories to AD-relevant outcomes, facilitating the identification of biomarkers for early 

detection. One particular example is the extension from disease status to cognitive 

outcomes. Although beta-amyloid plaques and neurofibrillary tangles are two major 

hallmarks of AD [1], various cognitive tests remain the most common way to help with 

clinical diagnosis. Exploring the relationship between multimodal imaging and biomarker 

measurements and cognitive outcomes is an important research topic.
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Earlier studies have been performed on single modality data, such as magnetic resonance 

imaging (MRI), positron emission tomography (PET), or cerebrospinal fluid (CSF) 

biomarkers. Recent studies have explored multimodal data and reported improved 

performance (e.g., MRI, FDG-PET and CSF biomarkers were jointly studied in [2]). Since 

multiple modalities are not completely isolated, there exist inter-correlations among those. 

Existing multimodal methods typically employ a simple strategy to bundle these data 

together, and thus ignore or oversimplify their relationships(e.g. [3]).

In this paper, we propose a new network-guided sparse learning model embracing both the 

complementary information and inter-relationships between modalities. The proposed model 

is applied to evaluate the predictive power of MRI and CSF proteomic measurements 

towards cognitive outcomes. The empirical results demonstrate significant improvements 

over the state-of-the-arts competing models, and also yield stable multimodal biomarkers 

across cross-validation trials.

2. METHODS

We write matrices as boldface uppercase letters and vectors as boldface lowercase letters. 

Given a matrix M = (mij), its i-th row and j-th column are denoted as mi and mj respectively. 

The Frobenius norm and ℓ2,1-norm (also called as ℓ1,2-norm) of a matrix are defined as 

 and , respectively.

We focus on multi-task learning paradigm, where MRI and CSF measures are used to 

predict one or more cognitive outcomes. Let {x1, ···, xn} ⊆ ℜd be MRI and CSF measures 

and {y1, ···, yn} ⊆ ℜc cognitive outcomes, where n is the number of samples, d is the 

number of predictors (feature dimensionality) and c is the number of response variables 

(tasks). Let X = [x1, …, xn] and Y = [y1, …, yn].

The ℓ2,1 norm [4] is a multi-task version of traditional lasso. While lasso only focuses on the 

feature level sparsity, The ℓ2,1 norm is proposed to couple multiple tasks together in addition 

to the original sparsity property:

(1)

Yet in this model the rows of W are equally treated, which ignores the structures among 

predictors. Group-Sparse Multitask Regression and Feature Selection (G-SMuRFS) method 

[5] was proposed to exploit the structures within and between the predictors and response 

variables. It assumes 1) a partition scheme exists among predictors, and 2) predictors within 

one partition should have similar weights. G-SMuRFS can be thought of as a multi-task 

version of group lasso.

In practice, the relationship among predictors may not be as simple as a straightforward 

partition used by G-SMuRFS. Many studies have shown that the human brain can be 

modeled as a complex network. To model these complicated structures among predictors, 

we propose a new Network-Guided ℓ2,1 Sparse Learning (NG-L21) model as follows.
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Let R be the predictor correlation matrix with Rij indicating correlation between predictors i 

and j. Given a threshold t, we can construct a network by connecting predictors with high 

positive and negative correlations (i.e., |Rij| ≥ t). We hypothesize that positively (negatively) 

correlated predictors share positively (negatively) similar weights across tasks. Therefore, 

we try to minimize

(2)

Since the selection of a proper threshold may be trivial, we also propose a threshold-free or 

weighted method as follows:

(3)

Here sign(Rij) deals with positive and negative correlations while Rij itself is applied to 

reduce the constraint impact on the less correlated pairs. Thus, the whole regularization term 

can be reformatted as , in which N is a neighboring matrix transformed from the 

symmetric correlation matrix R. In N, each row corresponds to one element in the 

correlation matrix R (Fig. 1). For each pair of predictors i, j, we create a row in N with i-th 

entry as –Rij, j-th entry as –Rijsign(Rij) and all the other entries as zeros. The intuition is 

that the weight difference between two correlated predictors should be minimized, which is 

reflected by the new regularization term of . Also by including the weight, the more 

correlated a feature pair is, the more constraint the pair is imposed by. We call this model 

NG-L21. Although this model is similar to graph-guided fusion [6] and group weighted 

fusion [7], neither of the prior models explored the correlation of predictors and multi-task 

responses together. The final objective function is formulated as:

(4)

where N is a sparse matrix where each row indicates a neighborhood relationship (i.e., edge) 

in the predictor network.

Well known to be non-derivable, ℓ1-norm can be easily solved by approximate lasso where 

an extremely small value is added to enable the smoothness. Eq. (4) can then be solved by 

simply taking the derivative w.r.t W and setting it to 0:

(5)

where D1 = NTN, a matrix with each row integrating all neighboring relations. For the i-th 

row, it is the sum of all the rows in N whose i-th element is nonzero. D2 is a diagonal matrix 

with the i-th diagonal element as . We have
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(6)

where W can be efficiently obtained by solving (XXT + γ1D1 + γ2D2)W = XYT. Following 

[5], an efficient iterative algorithm based on Eq. (6) can be developed as follows, and can be 

shown to converge to the global optimum.

3. RESULTS

3.1. Data and Experimental Setting

The MRI, CSF proteomic, and cognitive data were downloaded from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database. One goal of ADNI has been to test 

whether serial MRI, PET, other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early AD [8]. For up-to-date information, see www.adni-info.org.

This study (N=204) included 66 AD, 57 MCI and 81 healthy control (HC) participants 

(Table 1). For each baseline MRI scan, FreeSurfer (FS) V4 was employed to extract 73 

cortical thickness measures and 26 volume measures. 82 CSF proteomic analytes, evaluated 

by Rules Based Medicine, Inc. (RBM) proteomic panel [9] and surviving quality control 

process, were also included in this work. The 99 imaging measures and 82 proteomic 

analytes were used to predict a set of cognitive scores [8]: Rey Auditory Verbal Learning 

Test (RAVLT, 5 scores shown in Table 2 as joint outcomes). Using the regression weights 

from HC participants, all the MRI, CSF, and cognitive measures were pre-adjusted for the 

baseline age, gender, education, and handedness, with intracranial volume as an additional 

covariate for MRI only.

3.2. Experimental Results

We denote the weighted network model as NG-L21w, and the thresholded one as NG-L21t. 

For comparing performances between these two models and competing methods (i.e., 

Linear, Ridge, elastic net and L21), regression analysis was conducted jointly on all five 

RAVLT scores. Based on the assumption that FS and CSF measures could provide 

complementary information, we performed 18 experiments based on six different methods 

and three datasets (FS, CSF, FS+CSF). In each experiment, Pearson’s correlation 

coefficients (CCs) between the actual and predicted cognitive scores were computed to 

measure the prediction performances. Using 10-fold cross-validation, parameters were 

estimated and average CCs over 10 trials were reported.
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In our experiments, CSF proteomic analytes were found to have limited prediction power by 

itself (typically CC<0.4). But combining CSF and FS yielded improved results than using 

FS alone (Table 3), indicating possible complementary information provided by the two 

modalities. Both NG-L21 models outperformed the other methods in most cases. Ridge 

obtained comparable and sometimes better performances than NG-L21; but Ridge’s root 

mean square error (not shown due to space limit) tended to be higher than NG-L21. Fig. 2(a) 

and Fig. 2(b) show the regression weights in heatmaps and in brain space respectively. 

Ridge produced non-sparse patterns, which made the results less interpretable. Both NG-L21 

and L21 identified a small number of imaging markers, including AmygVol, EntCtx, and 

HippVol, which were known to be related to RAVLT scores.

NG-L21w achieved similar or slightly better performance than NG-L21t. This indicates that 

the NG-L21 performance is mainly determined by the correlations of high values and small 

weights (those were included in NG-L21w but excluded in NG-L21t) have just modest effect 

on improving the performance. In addition, we also compared NG-L21 with G-SMuRFS 

using symmetric information as grouping strategy. Generally they achieved similar 

performance, but tuned parameters of ℓ2,1-norm in GSMuRFS shrunk to almost 0, and led to 

non-sparse results.

Fig. 2(c) shows regression coefficients of CSF proteomic markers for all 5 RAVLT scores. 

Since all the scores measure memory performance, the coefficients across these scores are 

similar for the top proteomic markers. Some proteins known to be related to AD (e.g., 

APOE, ApoC-III, CD40, FRTN) are detected for all these scores. For example, FRTN 

(ferettin) is the main iron-storage protein capable of containing thousands of iron atoms. 

Recently it has been reported that ferritin from AD patients has a content of aluminum 

higher than that of controls [10]. And the irregular iron accumulative and disrupted iron 

metabolism have also been previously identified to be related with brain disorders. Detailed 

analysis of these identified proteomic markers warrants further investigation.

4. CONCLUSIONS

We proposed a new network-guided sparse learning framework, NG-L21, aiming to flexibly 

incorporate and model structure among predictors. Unlike traditional methods, this model 

could provide advantages in several folds: 1) explicitly incorporating the relationships 

among predictors in a more general way, 2) using data-driven patterns without any 

predefined parameters, 3) effectively identifying biomarkers influencing multiple responses, 

and 4) selection of correlated markers together rather than picking only one of them to 

improve the stability. With the application to the ADNI multimodal data (predicting memory 

scores from MRI and CSF proteomic measures), NG-L21 demonstrated improved prediction 

performance over the state-of-the-art competing methods, and identified stable and 

meaningful multimodal biomarkers. Combining MRI and CSF proteomic data yielded 

enhanced prediction performance than each single modality.
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Fig. 1. 
Each row in network matrix N (Right) corresponds to an element in correlation matrix R 
(Left).
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Fig. 2. 
Heat maps of regression weights (average over 10-fold cross-validation) for predicting 

RAVLT scores using FS + CSF measures. (a) FS weights from NG-L21w, L21, and Ridge 

respectively. Results from left (L) and right (R) sides are shown in a pair of panels. For each 

panel, 5 columns show results for TOTAL, T30, RECOG, TOT6, and TOTB respectively. 

The measures shown in the first seven row are unilateral, and the remaining ones are 

bilateral. (b) FS weights from NG-L21w mapped onto brain. (c) CSF weights from NG-

L21w: 5 columns correspond to TOTAL, T30, RECOG, TOT6, and TOTB respectively.
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Table 1

Participant characteristics (all from ADNI-1).

Category AD MCI HC

Number 66 57 81

Gender(M/F) 37/29 36/21 42/39

Handness(R/L) 63/3 55/2 77/4

Age(mean±std) 75.14±7.66 74.59±7.42 76.24±5.35

Education 15.04±2.97 15.79±2.88 15.86±2.85
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Table 2

RAVLT scores.

Score ID Description

TOTAL Total score of the first 5 learning trials

TOT6 Trial 6 total number of words recalled

TOTB List B total number of words recalled

T30 30 minute delay number of words recalled

RECOG 30 minute delay recognition score
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