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ABSTRACT

We present a novel methodology combining web-based soft-
ware development practices, machine learning, and spatial
databases for computer-aided quantification of regions of in-
terest (ROIs) in large-scale imaging data. We describe our
main methodological choices, and then illustrate the bene-
fits of the approach (workload reduction, improved precision,
scalability, and traceability) on hundreds of whole-slide im-
ages of biological tissue slices in cancer research.

Index Terms— imaging informatics, machine learning,
rich internet application, hybrid human-computer

1. INTRODUCTION

With recent advances in acquisition technologies, scientists
generate growing amounts of biological imaging data (e.g., in
anatomical pathology, neuroscience, drug discovery, or tox-
icology). Projects leading to terabytes of imaging data are
becoming usual in various contexts, e.g. when experimental
studies rely on whole-slide virtual microscopy, high-content
screening, molecular imaging by mass spectrometry, or auto-
mated volume electron microscopy. As a result, better imag-
ing informatics tools are needed [1] to ease the visualiza-
tion and high-throughput analysis of such high-dimensional
datasets in today’s collaborative, geographically distributed,
scientific context. As human interpretration of such datasets
is impractical at such scale and operator-dependent, there is a
strong need for computational methods to facilitate the extrac-
tion of quantitative information from these images. Despite
increasing progress in machine learning, for some tasks algo-
rithms have not yet reached reliable precision and interactive
methods are still needed to proofread algorithm results.
Tissue image analysis is a very active field of research [2]
including many works for tissue classification. Many of them
are algorithm-oriented papers where limited imaging data is
used to evaluate recognition performances of new standalone
algorithms. By contrast, our work proposes a practical and
scalable methodology with humans in the loop to ease the dis-
covery of new biomedical insights. To achieve this goal, we
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extend Cytomine, a rich internet application for remote visu-
alization and manual annotation [3], to enable computer-aided
extraction of biologically relevant measurements from large-
scale tissue imaging data. Our design choices are presented
in Section 2. Results on a practical biological application that
requires detection and surface measurements of tumoral re-
gions in hundreds of large (> Gigabyte) tissue slice images
are given in Section 3. The potential impact of the approach
is then discussed in Section 4.

2. METHODS

We propose a hybrid human-computer approach for the
quantification of large sets of high-resolution bioimages by
combining recent web development methodologies, spatial
database concepts, machine learning techniques, and collabo-
rative proofreading. In this work, the extraction of contours of
regions of interest (ROIs) is formulated as a pixel classifica-
tion problem followed by contour processing. First, manual
annotations of ROIs (e.g. tumoral regions) and non-ROI
(other subtypes of tissues) are used to train a pixel classi-
fication model. This model is then applied in a distributed
fashion on new images and its predictions are processed and
encoded in a centralized repository. Finally multiple users
can proofread these predictions to derive reliable image-
based measurements (e.g. surface measurements of tumoral
regions). To implement this workflow, we rely on the Cy-
tomine framework [3] which facilitates large-scale imaging
data curation through a web interface. While its visualization
and manual annotation modules have been described previ-
ously, in this section we first briefly recap its main design
principles then describe our extensions.

2.1. General design principles

The rich internet application [3] uses recent web technologies
and integrates various tools, standards and algorithms. High-
resolution, two-dimensional images (with hundreds of thou-
sands of pixels wide and tall) can be visualized at multiple
resolutions in traditional web clients through caching mech-
anisms and distributed image tile servers supporting various
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Fig. 1. An overview of the proposed architecture with the web
client user interface and the tissue pixel classification applica-
tion connecting through a RESTful web API.

image formats. Its underlying relational data model allows to
create and manage projects which contain users, images, vo-
cabularies with domain-specific terms, and layers of manual
annotation geometries (e.g. polygons) drawn on top of origi-
nal images to highlight regions of interest. All project data are
stored in a spatial, relational, database and can be visualized
and edited through a web interface or third-party softwares.

2.2. Spatial data model and RESTful API

The annotation is the central entity in the data model for ROI
description. An annotation is a geometrical shape, located
within an image, and for which a term from a user-defined,
project-related, vocabulary can be associated. To enable
model training (see next section) and proofreading of their
results, here we propose three subtypes of annotations: user
annotations (representing manual user annotations used as
training sets for learning pixel classification models), job an-
notations (annotations generated by software instances), and
reviewed annotations (for algorithm predictions proofread by
users). In addition, we propose a job entity to store instances
of softwares described by key-value pairs of parameter val-
ues. As we follow a REST architecture style (see Figure 1),
each resource (e.g. an annotation) is referenced by a uniform
resource locator (URL). The RESTful application program-
ming interface (API) allows communication between servers
and (web or third-party) clients through HTTP requests.

2.3. Generic machine learning and contour processing

For ROI detection, a supervised pixel classification model is
first built using a generic algorithm based on subwindows
and multiple output extremely randomized trees [4, 5]. It
is trained from user manual annotations (retrieved using the
web API) corresponding to ROIs and non-interesting regions.
For the prediction phase, pixel classification can be performed
by multiple software clients that work on small, independent,
specific image areas (tiles), enabling massively distributed
processing of large images. Connected components labeling
then allows to extract contours from each tile pixel classifier
mask. These contours need then to be translated into valid
geometric shapes for spatial databases (as also pointed out
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by [6]). In our case we used hit-or-miss transforms to elimi-
nate invalid geometric shapes. Point coordinates of valid ge-
ometries are then communicated through the web API to the
central server that translates internally the HTTP request into
spatial insert queries. Finally, once all tiles are processed,
these contours are eventually merged by spatial union queries
over tiles to take into account the fact that a single ROI may
actually overlap several tiles.

2.4. Proofreading algorithm predictions

A polygon simplification algorithm [7] is then applied in
order to slightly reduce the number of vertices of polygons
hence easing manual edition of contours. To allow interac-
tive and collaborative proofreading, we extended the image
and annotation visualization web interface of [3] in order to
display simplified job annotations as layers of geometrical
shapes overlaid on top of the original images (see Figure 1,
left). Then, for each image under review, a user is able to
accept or reject individually (or all at once) predicted geo-
metrical shapes, or edit them through drawing tools which
allow to edit vertices, scale, substract or merge polygons, or
fill internal holes. These user manual operations are auto-
matically translated internally into spatial queries to update
reviewed annotations.

3. EXPERIMENTAL DATA AND RESULTS

3.1. Biological application

The proposed methodology has been used to identify the im-
pact of a pulmonary tissue composition change on lung tumor
onset and progression [8]. To assess these questions, different
mouse models were developed where mice were treated with
components inducing a specific type of neutrophilic inflam-
mation in lung tissues. The effects of pulmonary inflamma-
tion has to be investigated in lung hematoxylin-eosin-stained
digital slides (8 tissue slices per animal) and the tumor area
has to be determined and reported to the total area of lungs
for different experimental conditions. A typical whole-slide
scanned image has 35000 x 30000 pixels (with 40X objective
and pixel resolution of 0.23um).

3.2. Evaluation of performances

From a machine learning perspective, the task could be seen
as a binary pixel classification problem with tumors as pos-
itive class, and all other subtypes of tissues (including in-
flammatory cells, blood vessels, cartilage, bronchus, ...) as
negative class (see Figure 2, bottom right). After a develop-
ment phase where scientists manually annotated regions cor-
responding to different subtypes of tissues, several pixel clas-
sification models were trained and qualitatively evaluated on
a few slides (final chosen parameter values are 7' = 10 trees,
Nmin = 2, and &= 100000 subwindows of fixed-size 24 x 24
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Fig. 2. Average timings and operation counts using the local “FloodFill” approach and our web-based “Cytomine” approach.
Bottom right: one of the five whole-slide hematoxylin-eosin-stained tissue image used for performance evaluation (original
image size: 36864 x 25344 pixels), and examples of patches extracted in positive (tumor) and negative regions.

pixels encoded in HSV). The approach was then used to quan-
tify automatically about 250 whole-slide images correspond-
ing to 5 experimental studies, which yielded the validation
of a total of more than 17000 tumoral ROIs. To assess the
impact of the proposed workflow on scientist daily workload,
we compared the time required to proofread algorithm predic-
tions (through a regular Wi-Fi internet connection) with re-
spect to another semi-automatic approach (on the local com-
puter). The latter approach, which was the standard practice
in the laboratory before the introduction of our methodology,
combines the use of Image] and Adobe Photoshop on down-
sampled images. It requires the user to click on tumor islets
using a “magic wand” tool (with a flood fill algorithm) fol-
lowed by manual corrections (e.g. to reject inflammatory cells
which have similar color intensities). Timings and manual
operation counts for 5 randomly choosen whole-slide images
(totaling 900 tumor islets) have been recorded and averaged.
Figure 2 summarizes these results which clearly show that
the number of mouse clicks and total operation time is lower
when using our approach. However, we observed cursor trav-
elled distances are roughly equal due to the positioning of
proofreading buttons and the lack of keyboard shortcuts in
our web interface at the time of the experiment. Additional

qualitative and quantitative results are given in Figure 3.
3.3. Other case study

Another preliminary experiment, related to cancer studies
with tens of hematoxylin-DAB-stained immunohistochemical
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slides, shows that our approach with improved user interface
and keyboard shortcuts reduces the required time to contour
ROIs from 15 minutes (with a fully manual approach) downto
3.5 minutes on average. In that specific study, for the base-
line approach it was needed to manually and systematically
delineate all contour lines because usual flood fill algorithms
are inoperative on regions with similar color intensities but
different textured patterns.

4. DISCUSSION

4.1. Impact on workload, precision, and current practices

In practice, we expect savings of time and manual operations
provided by our approach would depend on the sizes and den-
sities of the ROIs (e.g. if only a few small ROIs have to
be detected in each image, then our approach is less benefi-
cial). Performances also depend on appearance heterogeneity
of ROIs and other image regions that can affect recognition
performances of the pixel classification models. Also, the re-
ported results do not take into account the model develop-
ment phase which can involve several time-consuming steps
to improve recognition of difficult regions. Overall, although
it was shown previously that the used algorithm works well on
diverse types of imagery [4], it still requires time to tune its
few parameters and to annotate a realistic training set, hence
the approach will be mostly useful when one has to analyze
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Fig. 3. Qualitative and quantitative results for the five digital slides used for performance evaluation. For each line: low
magnification of the original H&E tissue image (left), tumor tissue classification automatically generated by algorithm (middle,
in red), final tumor tissue classification after proofreading by expert (right, in green). Confusion matrices show algorithm
recognition rates within tissues computed a posteriori (i.e. the ground-truth is the final tissue classification after proofreading).
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large numbers of samples. This advantage is especially true
given that the image processing can be massively distributed,
and that algorithm results can be proofread remotely by mul-
tiple scientists. Regarding final quantification accuracy, we
expect our hybrid human-computer approach (that combines
pixel-level automated classification with careful proofread-
ing) to produce more precise contours with respect to an ap-
proach working on downsampled images where boundaries
are less accurate and small tumor islets can be missed by the
human eye due to fatigue. In addition, we have implemented
a blinded mode that can be activated to hide image names in
order to avoid bias when proofreading algorithm results. Fur-
thermore, the approach stores algorithm parameters and final
reviewed annotations to achieve a better traceability. This also
allows subsequent pixel classification model re-training with
the hope to improve recognition accuracy over time. Overall
we hope such an approach will contribute to more precise and
reproducible results in biomedical research.

4.2. Extensibility

Other algorithms could be integrated into our approach. One
could indeed leverage the existing workflow (web communi-
cation mechanisms to register algorithm parameters, retrieval
of manual annotations for parameter tuning or training, dis-
tributed processing of image tiles, contour processing and
simplification services), and proofread the results of such
new algorithms on the web. For example, segmentation al-
gorithms from Ilastik [9] or Fiji [10] could be integrated.
In preliminary work, we have integrated Fiji routines for
tile-based thresholding and color deconvolution that can be
visualized on-the-fly in the web user interface.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach that combines ideas
from machine learning, spatial databases, and web software
development to ease the quantification of regions of interest in
large bioimages. We are currently extending the methodology
with other user interfaces and algorithms to produce various
types of quantifications for different imaging modalities (e.g.
combining detection of regions of interest and positive cell
counting within immunohistochemical images, cell sorting in
cytology, or phenotype recognition in microscopy images).
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