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Abstract

Despite ongoing improvements in magnetic resonance (MR) imaging (MRI), considerable clinical 

and, to a lesser extent, research data is acquired at lower resolutions. For example 1 mm isotropic 

acquisition of T1-weighted (T1-w) Magnetization Prepared Rapid Gradient Echo (MPRAGE) is 

standard practice, however T2-weighted (T2-w)—because of its longer relaxation times (and thus 

longer scan time)—is still routinely acquired with slice thicknesses of 2–5 mm and in-plane 

resolution of 2–3 mm. This creates obvious fundamental problems when trying to process T1-w 

and T2-w data in concert. We present an automated supervised learning algorithm to generate high 

resolution data. The framework is similar to the brain hallucination work of Rousseau, taking 

advantage of new developments in regression based image reconstruction. We present validation 

on phantom and real data, demonstrating the improvement over state-of-the-art super-resolution 

techniques.
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1. INTRODUCTION

MR images have a fixed resolution that is determined by factors such as scan time, signal-

to-noise ratio (SNR), physical properties of the scanner (3 Tesla vs. 7 Tesla), and the 

sampling rate. The resolution of MR data fundamentally determines its usefulness and the 

limiting factors of its performance for image segmentation and registration. Multi-modal 

analysis has grown in prominence in the neuroimaging community in the last decade. 

However, a basic requirement for the optimal performance of multi-modal work, is that the 

data represents the subject in the same spatial frame of reference and at the same resolution 

for all modalities. Another use of high resolution scans is the accurate localization of object 

boundaries, with lower resolution leading to the blurring of boundaries and inaccuracies in 

structure volume estimation—commonly referred to as the partial volume effect. As such, 

improving the resolution of MRI has been a well established goal in the community. There 

have been numerous approaches over the years, including pre- [1, 2] and post- [3–9] 

processing. By pre-processing we mean technologies developed on the scanner, which are 

designed to help improve the slice-selection pulse, the pulse-sequence timing, sampling 

improvements in frequency domain, or some of the other short-comings of the scanner (see 

Greenspan [10] for a discussion). Such pre-processing approaches depend on scanner 
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technologies—which vary from manufacturer to manufacturer—that are not always 

available in all settings. More importantly, they do not solve the problem of pre-existing low 

resolution data. Despite these methods, there are fundamental physical reasons that make 

true high resolution acquisitions of some pulse sequences impossible. Primarily the long 

repetition times required for some image contrasts, double spin echo T2-w sequences for 

example. Thus, we are interested in post-processing solutions to this problem.

One class of post-processing approaches, known as image hallucination [8, 9, 11, 12] have 

seen several recent developments, with its two formulations: Bayesian [12, 14] and non-

local means [8, 9, 11]. The Bayesian approaches have often been formulated as a 

constrained optimization problem with a known imaging process, with the high resolution 

image the maximum likelihood estimator of the cost function. The non-local mean 

approaches use learning paradigms which depend on some training from which an imaging 

model is learned.

Patient scan sessions typically acquire multiple images using various sequences of varying 

resolutions. It is the goal of this work to use the available higher resolution (HR) scans to 

improve the quality of the lower resolution (LR) scans via a regression based image 

reconstruction [15] approach. Our approach is influenced in part by the work of Rousseau 

[8] and our own related work [16–18], particularly that of [15].

2. METHOD

Similar to the work of Rousseau [8], we take as input a HR image  with contrast C1 and 

a LR image  with contrast C2.  is initially upsampled to the same resolution as 

using linear interpolation and registered to . The goal being estimation of , the HR 

version of . We assume that we have an atlas consisting of  which are HR 

versions of an atlas subject in contrasts C1 and C2, respectively. The atlas pair 

are sampled at the same grid locations in space. We augment our atlas by down-sampling 

 and again upsampling by interpolation to generate . Thus  loses the high 

frequency information present in  but is now at the same resolution as . We first 

extract p × q × r sized patches from , centered on the ith voxel, xi, and these are then 

stacked into the vector xi of size d × 1 with d = pqr and xi ∈ ℝd. For this work, we let p = q 

= r = 3. We augment xi by taking the similar sized patch yi from , centered at the ith 

voxel and concatenating with xi to give us . The corresponding ith voxel in 

 is denoted by zi. The regression based reconstruction of Jog et al. [15] frames the 

problem as the independent attribute vector  with dependent value zi.

We can learn this nonlinear regression with a random forest (RF) approach. A RF is 

constructed from a large collection of regression trees. A regression tree ensemble learns 

from the  and zi in the atlas data  [19]. Individual regression trees learn a 

nonlinear regression by partitioning the (2d)-dimensional space of ’s into regions based on 

a split at each node in the tree. During training, splitting is done by randomly choosing one-
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third of the  attributes and the attribute and the threshold which minimizes the least 

squares criterion, is chosen at that node. The leaf nodes of the tree are simply assigned to the 

average value of the training zi’s that accumulate in that node. As such, the learned 

regression is nonlinear and piece-wise constant. Single regression trees are weak learners 

[20] with high error rates, thus we use a bagged ensemble of regression trees, which is our 

RF. The error in a RF is reduced during training by bootstrap aggregation [20]. Our 

ensemble consists of 30 trees, with the bootstrapped data for each tree generated by 

sampling the training data N{= 106} times with replacement.

To estimate  from the inputs  and , we generate the corresponding patches for all 

voxel locations i and pass those through the trained RF. The outputs of each regression tree 

in the RF are aggregated by averaging to produce an intensity value for the ith voxel of . 

The training process can be relatively computationally intensive, however each tree can be 

trained in parallel, and the total training time is approximately 2–3 minutes. The image 

reconstruction by applying the learned regression to the input data takes ten seconds. The 

training and output times are based on data with HR of 1 × 1 × 1.5 mm with voxel 

dimensions 256 × 256 × 173.

3. RESULTS

3.1. Validation on BrainWeb Phantom

In this experiment, the atlas  consisted of the multiple sclerosis (MS) BrainWeb 

phantom T1-w and T2-w image at 1 mm3 isotropic resolution [21]. The subject  was the 

normal BrainWeb phantom T1-w at 1 mm3 isotropic resolution and a resampled low 

resolution T2-w image. The regression ensemble was trained on the atlas and then applied to 

the subject to produce a synthetic high resolution T2-w image, . We compared to two 

baseline interpolation methods, nearest neighbor (NN) and trilinear (TL) interpolation, as 

well as the state-of-the-art self similarity based super-resolution (SSS) [7] by computing the 

peak signal to noise ratio (PSNR) for each of the four methods. We also varied the through 

plane slice thicknesses of the input data from 3, 5, and 9 mm with the results shown in Table 

1, and example results of the interpolation methods are shown in Fig. 1.

3.2. Super Resolution with Noise on BrainWeb Phantom

In this experiment, the atlas  consisted of the MS BrainWeb phantom T1-w 

1mm3 isotropic resolution, and a corresponding T2-w image [21]. The atlas T2-w image was 

downsampled to 3 mm in plane resolution and upsampled back to 1 mm using linear 

interpolation, to generate . The subject image  is the normal BrainWeb phantom of a 

T1-w and a resampled T2-w originally at 3mm through plane resolution image with various 

noise levels. The regression ensemble was trained on the atlas and then applied to the 

subject to produce a synthetic T2-w image, . We, again, report PSNR for each of the four 

interpolation methods (see Table 2).
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3.3. Super Resolution of Real T2-W Data

In this experiment we used our regression based reconstruction for the super resolution of 

T2-w images from the Kirby data set [22]. We chose 10 subjects from the Kirby data set who 

went through a scan-rescan protocol, which included a T1-w MPRAGE and a T2-w scan, 

both resampled to 1 × 1 × 1.5 mm3 resolution. We downsampled the T2-w image to 1 × 1 × 

4 mm3 resolution and used it as an input to synthesize the higher resolution image and 

compared it to the acquired true T2-w scan. Table 3 shows the average PSNR (and standard 

deviation) values of the super-resolution T2-w images with the existing true T2-w images for 

three methods over the 10 subjects. Fig. 2 shows our result in conjunction with a trilinear 

interpolated image and the ground truth T1-w and T2-w images.

3.4. Super Resolution of Real FLAIR Data

Fluid Attenuated Inversion Recovery (FLAIR) is a pulse sequence used for imaging subjects 

with MS to best localize their white matter lesions. The lesions appear hyperintense, in 

FLAIR images, with respect to other tissues and can be easily delineated, for lesion volume 

quantification. These images are usually acquired at a lower resolution in the through plane 

direction. The T1-w images in our data set are at a 1 × 1 × 1.5 mm3 resolution, while the 

FLAIR images are acquired at 1 × 1 × 4 mm3. We used our algorithm to synthesize high 

resolution FLAIR images for this data. Fig. 3 shows a visual comparison between an 

interpolated FLAIR image and our result with the corresponding T1-w image.

4. CONCLUSION

We have described a super-resolution scheme for MR images using a model-free, supervised 

learning technique based on RFs. The presented results are superior to the current state-of-

the-art [7]. We also note that in the recent work of Rousseau et al. [9], a super-resolution 

result on BrainWeb data was reported to have PSNR of 27.62 to 29.53, which we are also 

superior to. The results of RBR are visually crisper than the other interpolation methods (see 

Figs. 1, 2, and 3), which could lend itself to localizing structures more accurately. Our 

method is also computationally efficient and can produce a 256 × 256 × 173-sized image in 

less than ten seconds. We intend to use this method in automatic segmentation and 

registration algorithms as a preprocessing step to achieve better results.
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Fig. 1. 
The top row shows the input data of a HR (1 mm through plane) T1-w and LR (3 mm 

through plane) linear interpolated result, as well as the true HR T2-w image, respectively. 

The bottom row shows the results of various interpolation approaches. From left to right, 

trilinear (Linear), self similarity based approach SSS [7], and our regression approach 

(RBR).
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Fig. 2. 
The top row shows the true HR (1 mm through plane) T1-w and T2-w images respectively. 

The second row shows the results of various interpolation approaches, (from left to right) 

trilinear (TL) and our regression approach (RBR).
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Fig. 3. 
The two rows show a super-resolution FLAIR result using our regression approach for two 

different subjects. From left to right are the original high resolution T1-w image, the 

upsampled low resolution input FLAIR and our result (RBR) in the last column.
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Table 1

PSNR (dB) results across three input resolutions for each of four methods: nearest neighbor (NN) and trilinear 

(TL) interpolation, the state-of-the-art SSS [7], and our method—the regression based reconstruction (RBR).

PSNR

Z Res. NN TL SSS [7] RBR

3 mm 12.62 12.90 22.71 32.10

5 mm 11.46 11.90 19.69 31.87

9 mm 10.36 10.79 16.94 31.03
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Table 2

PSNR (dB) results across five noise levels for each of four methods: nearest neighbor (NN) and trilinear (TL) 

interpolation, the state-of-the-art SSS [7], and our method—the regression based reconstruction (RBR).

PSNR

Noise (%) NN TL SSS [7] RBR

1% 12.62 12.90 19.25 33.93

3% 12.59 12.89 19.64 33.65

5% 12.54 12.87 19.56 33.00

7% 12.47 12.84 19.83 32.20

9% 12.40 12.82 19.56 31.30
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Table 3

Mean PSNR (dB) and standard deviation for each of three methods across 10 subjects. The three methods are 

nearest neighbor (NN) and trilinear (TL) interpolation, and our method—the regression based reconstruction 

(RBR). The state-of-the-art SSS [7] failed to run on any of the real data. We made several attempts to 

transform the real data into a usable form for SSS, which did not help.

Mean PSNR (Std. Dev.)

NN TL RBR

21.1 (0.77) 22.70 (0.74) 26.40 (0.70)
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