Abstract:
The accurate diagnosis of Alzheimer's disease (AD) plays a significant role in patient care, especially at the early stage, because the consciousness of the severity and ...Show MoreMetadata
Abstract:
The accurate diagnosis of Alzheimer's disease (AD) plays a significant role in patient care, especially at the early stage, because the consciousness of the severity and the progression risks allows the patients to take prevention measures before irreversible brain damages are shaped. Although many studies have applied machine learning methods for computer-aided-diagnosis (CAD) of AD recently, a bottleneck of the diagnosis performance was shown in most of the existing researches, mainly due to the congenital limitations of the chosen learning models. In this study, we design a deep learning architecture, which contains stacked auto-encoders and a softmax output layer, to overcome the bottleneck and aid the diagnosis of AD and its prodromal stage, Mild Cognitive Impairment (MCI). Compared to the previous workflows, our method is capable of analyzing multiple classes in one setting, and requires less labeled training samples and minimal domain prior knowledge. A significant performance gain on classification of all diagnosis groups was achieved in our experiments.
Date of Conference: 29 April 2014 - 02 May 2014
Date Added to IEEE Xplore: 31 July 2014
Electronic ISBN:978-1-4673-1961-4