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ABSTRACT

We present a method for the identification and classification
of local symmetries in biological images. We aim at obtaining a
precise estimate of symmetric junctions in a scale and rotation in-
variant way. The proposed method is template-free, which allows
the test of any combination of arbitrary symmetry orders in an ef-
fective way.

Our measure of local symmetry is derived from a circular har-
monic wavelet analysis. The basis functions exhibit different sym-
metry orders. We use this measure to formulate a classifier to label
the different junctions into one of several symmetry classes.

We present experimental results, and validate our method us-
ing both on synthetic images and biological micrographs.

1. INTRODUCTION

Local symmetries and symmetric junctions are common in na-
ture. For instance, bilateral and three-fold symmetric objects
can be found in various biological samples: two-fold symmetries
(ridges) are present in filaments, fibers and membranes; hexag-
onal patterns appear in endothelial cells (e.g. in the eyes), in
the leaf or stem cross-section of plants (e.g. Convallaria), etc.
The detection of these symmetries and junctions is fundamen-
tal to analysis of the corresponding microscopic images. As an
example, experiments in stem cell research require the accurate
detection of cell structures (like tight junctions), which exhibit
polygonal shapes [1].

The difficulty of the problem is twofold. First, patterns in nat-
ural images are frequently subjected to unknown and variable ge-
ometric transformations such as rotation, translation, and scaling.
Second, biological micrograps are affected by various types of dis-
tortion, such as measurement noise (Poisson, etc.) and local vari-
ations in intensity.

Within the framework of circular harmonic wavelet frames, we
propose a method to overcome these problems in order to the de-
tect and classify local symmetries in an efficient way.

Broadly, one can separate approaches targeting junction de-
tection into three categories: methods based on the detection and
analysis of edges and gradients [2, 3]; feature analysis with struc-
ture tensors [4, 5]; or matching parametric junction templates [6—
11].

Detectors based on gradient or the structure tensor are com-
monly used in computer vision. They are mostly adapted to dif-
ferentiate between specific types of keypoints (e.g. junction, or
edge). Detectors in the last category are usually template-based,
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and, with the exception of steerable filters, they involve discretized
rotation angles for template-matching.

In this paper, we propose a template-free method for the iden-
tification and classification of local symmetry. The backbone of
our algorithm is the circular harmonic wavelet transform, which
distributes the energy of the image among a set of harmonics cor-
responding to different symmetry orders. Relying on this energy
distribution, we propose a measure of symmetry and a framework
for classification of symmetry order based on assigning energies
to different symmetry states and identifying the minimum energy
state.

Our method differs from the existing approaches in several
ways. First of all, our framework is template-free, thus there is no
need for template-matching, which is computationally heavy and
less accurate. Second, our framework has a multiresolution struc-
ture, which provides detections across scales. Finally, our system
provides a measure of symmetry at each location in the image and
for arbitrary symmetry orders in a fast and robust way. It is insen-
sitive to local variations in image intensity.

2. GENERAL FRAMEWORK

To introduce the notations and set the basis of our algorithm, we
give a brief introduction to circular harmonic wavelet frames, and
we refer to [12] for more details. The symmetry measure (score)
and the classification problem are discussed next.

In this paper we use x € R? and w € R? for the Cartesian, and
(reR, 0 €[-nmn)and (p €R, ¢ € [-m,7m)) for the polar coordi-
nates in spatial and Fourier domains, respectively. We denote the
Fourier transform of a function f by f.

2.1. Circular Harmonic Wavelet Frames

To construct a circular harmonic tight frame we start from a ban-
dlimited isotropic mother wavelet in Ly (R?), denoted by w, whose
shifts and dilations form a wavelet frame. This isotropic wavelet at
scale i and grid point (location) xy (in 2D), has the form

wi(x—xo)=%w(%)-

In this work, we use Simoncelli’s isotropic mother wavelet [13],
defined by its Fourier transform:

() ={ cos $log (7)),

0, otherwise.

/A
Z<p5ﬂ

The circular harmonic wavelet frame is obtained from this pri-
mal isotropic wavelet by the application of the multi-order com-
plex Riesz transform.
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The nth-order complex Riesz transform, 22", is the n-fold it-
erate of the complex Riesz transform, &%, defined in the Fourier
domain as

Z" (%) = " foo1(p, ).

It is a unitary, scale-invariant transform, whose application on
W;i(- — xg) preserves its tight frame property. It means that, by
choosing a distinct set of harmonics (/N distinct values for the
integer n, constituting the set S of harmonics) we can form a tight
frame consisting of n channels, referred to as circular harmonic
wavelets.

Proposition 1 The wavelet channels corresponding to harmonics
ny and ny with ny # ny are orthogonal to each other:
Proof.

To prove that the generated wavelet channels at a given scale i
and position xq are orthogonal, note that

W\

- x0), ") (- - x0))
T (2m)?

221 (o SIS/ B 3 ) .
=y |, ot pdpa

1 oo rm o, . .
) Wfo f_ﬂ Ih(p) 7™ e pdpdgy

L Rt f” (1 —n2)
=——| Ik dp | =794
(2n)2fo [h(p)I"pdp . ¢

- Cf” elm=n2pgy
=7

ftp(”l)(ziw)tp("z)(ziw)dw

where we took advantage of the Parseval identity, the isotropy of
the primal radial wavelet, and a change of variables. The last in-
tegral is 1 if n1 = np, and vanishes otherwise. This means that the
generated wavelet channels at a given scale i and position xy are
orthogonal.

The orthogonality is valid across wavelet channels at any given
scale and location.

As a result of the transformation and the orthogonalitiy of the
harmonic channels, the local energy of the image is preserved and
distributed among a set of harmonics, corresponding to the an-
gular Fourier factors e/”®. In the following subsection we exam-
ine this distribution and use it to define a measure of local M-fold

symmetry.

2.2. Local Wavelet Energies

Let q,,; denote the nth channel wavelet coefficient at scale i and
location of interest xg:

dn,i = W (= x0), ).

To establish a correspondence with the symmetry order, we
define the following energy term for n € S:

_ |qn,i|2
En,i - 27
2 mes|qm,il

to which we refer to as normalized-energy wavelet coefficients.
In Figure 1, we show the distribution of the normalized-energy
wavelet coefficients at a fixed scale and four different locations:
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Fig. 1. The distribution of normalized-energy wavelet coefficients
corresponding to 4 different locations: (a), (b), (c) and (d).

(a) four-fold symmetry (cross-intersection), (b) three-fold sym-
metry, (c) two-fold symmetry (ridge), (d) no symmetry. In the case
of a cross-intersection, we observe that every fourth component
is high compared to the rest. In case of three-fold symmetry this
is valid for every third, while in case of the ridge, every second.
By contrast, when we lack symmetry no such concentration is
observed. Thus, empirically we can say that the “energy” of the
wavelet is highly concentrated in M-fold periodic harmonics in
case of M-fold symmetry, while there is no repetitive pattern in
the absence of local symmetries. We use this information to build
up a model for the quantitative analysis of the data.

2.3. Symmetry Metrics

Based on the above discussion we define the following quantity (F
score) as a measure of symmetry:

1 2
mZnesM |Gn,il

F(xo; M, 1) = 1)

T )
|S_—SM|ZneS—SM |qn,i|2

for a fixed scale i and location xg . Sp; denotes the subset of S con-
sisting of harmonics that are integer multiples of M (Sy; ={ne€S:
M|n} c S) and |Sy| denotes the cardinality of the set Sy;. Concep-
tually, by separating out the M-periodic circular harmonics, we
break up the local energy of the image around a point into a com-
plementary component with M-fold angular symmetries (numer-
ator) and a component lacking such symmetries (denominator).
The ratio of these energies is used to determine if there is a signif-
icantly higher concentration of energy in the first component.

The stronger the local M-fold symmetry, the larger is the
numerator of F(xg; M,i) compared to its denominator. Thus, a
higher F score indicates a stronger M-fold symmetry at location
xo and scale i. Moreover, this quantity is invariant to changes of
intensity.

To obtain multiscale detection, we define a (dyadically) scale-
invariant measure by taking the maximum over all scales:

F(xp; M) = maxF(xg; M, i).
1
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Wavelet analysis with circular harmonic wavelets
Gn,i = (W;i(' —xo), )

Multi-scale symmetry measure
1 Z 12
. ST ZneSy | dn,il
Flxo; M, 1) = W—”Z
s Lnes—Su | Gn,il

F(xp; M) = max F(xq; M, 1)
1

4

Classification of symmetry orders

M (x0) = argmin P(j; xg)
jeJ

4

Postprocessing
Visualization

Fig. 2. The main steps of the algorithm.

2.4. Classification of Symmetry Orders

We use the F score, defined earlier, to classify keypoints into one
of several symmetry classes. To assign a symmetry class to a given
point, we take advantage of the fact that the F score indicates the
strength of alocal M-fold symmetry. Our approach is based on the
comparison of F scores for different symmetry orders.

To classify a pixel as belonging to one of several local symme-
try classes, we define a potential energy for each state (symmetry
order) j, using the measure introduced previously:

P(j; x0) = —gj (F(x0; ),

where g;s are monotonically increasing functions. The lower po-
tential corresponds to a stronger j-fold symmetry (i.e. a more sta-
ble symmetry state). Given a set J of possible symmetry orders, the
local symmetry order of point xp is then determined by the state
with the lowest potential energy:

M(xo) =argmin P(j; xp).
jeJ

The simplest way to define the potential energy is by taking all g;s
to be the identity function. To account for the different distribu-
tion of the scores as a function of j, we modify this by introducing
rescaling factors C; depending on j: g;(u) = u/Cj. For this, we
assume an i.i.d. Gaussian distribution for the g coefficients in (1),
and set C; as the threshold for F(; j) to reach a fixed probability
(here 0.95). The resulting rule is:

F(xg;j F(xg;j
(xo.]):ar max (%0 ]).

M(x ) = argmin —
0 gje] C] jeJ Cj

2.5. Local Symmetry Detection

The algorithm we propose detects and classifies local symmetry
centers in a multiscale and template-free way. The main steps of
the algorithm are summarized in Figure 2.

Fig. 3. Uniform 3-4-5 tiling in hyperbolic plane. Detection of two-
fold symmetries or ridges (red), three- (yellow), four- (green), and
five-fold (blue) junctions.

First, we do a wavelet analysis with circular harmonic wavelets,
which is followed by the computation of the symmetry measure
in a multiscale way. Once the measures are computed for each
possible symmetry order at each location, the classification of the
different symmetry orders is performed. The detection process is
finished after postprocessing and visualization stages.

The main postprocessing step is dedicated to improving the
results by local voting in case of noise. It means that, after the clas-
sification process, the algorithm takes a majority vote in the local
neighborhood of each pixel.

3. EXPERIMENTAL RESULTS

Our symmetry detection and classification algorithm is available
as a plugin for Image]J, a public-domain image processing plat-
form implemented in Java. The result of the identification and
classification process is a colored image, denoting the different lo-
cal symmetries with different colors. The typical running time of
the algorithm for two different symmetry orders taking an image
of 512 x 512 pixels is around 10 sec on a 2.4 GHz Mac workstation.
To evaluate the performance of the algorithm, we used various
test images. Among them we show two representative examples.
The first test image that is a 3-4-5 uniform tiling of the hyperbolic
plane.! It exhibits different local symmetries in a multiscale way
(Figure 3). Our goal was to identify the different local symmetries,
namely: two- (ridges), three-, four- (cross intersection) and five-
fold. The detections are accurate regardless of the orientation and
scale of the patterns. The second test image presents a stem cross
section of maize (Figure 4, upper left). As is common in plants,
the cells form a type of mesh where most nodes have a fixed order
(here 3). Therefore, our goal here was to distinguish between these
three-fold junctions and the two-fold cell walls that connect them.
Despite the non-uniform intensity and the variations in shapes
and angles, as well as size and orientation, almost all three-fold
junctions are detected and distinguished from the cell walls.

1http: //en.wikipedia.org/wiki/Uniform_tilings_in_
hyperbolic_plane
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Fig. 4. Stem cross section of maize in light microscopy. Detec-
tion of two-fold symmetries or ridges (red) and three-fold junc-
tions (green). Subfigures: original image, detected edges, detected
three-fold junctions, combined colored image.

4. CONCLUSIONS

We presented a general wavelet-based framework for the detec-
tion and classification of local symmetry centers in images. The
attractive features of the algorithm are (i) the multiscale approach
and the rotation-invariance, which make it possible to obtain a
precise estimate of the junctions across scales and at arbitrary ori-
entations; (ii) robustness to noise, deformations, and local inten-
sity variations; and (iii) speed. Also, since any combination of ar-
bitrary symmetry orders may be tested without requiring one to
design specific templates, the approach is general and easily ex-
tensible without a significant overhead for increasing the number
of tested patterns.
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