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Abstract

Fluid Attenuated Inversion Recovery (FLAIR) is a commonly acquired pulse sequence for 

multiple sclerosis (MS) patients. MS white matter lesions appear hyperintense in FLAIR images 

and have excellent contrast with the surrounding tissue. Hence, FLAIR images are commonly used 

in automated lesion segmentation algorithms to easily and quickly delineate the lesions. This 

expedites the lesion load computation and correlation with disease progression. Unfortunately for 

numerous reasons the acquired FLAIR images can be of a poor quality and suffer from various 

artifacts. In the most extreme cases the data is absent, which poses a problem when consistently 

processing a large data set. We propose to fill in this gap by reconstructing a FLAIR image given 

the corresponding T1-weighted, T2-weighted, and PD-weighted images of the same subject using 

random forest regression. We show that the images we produce are similar to true high quality 

FLAIR images and also provide a good surrogate for tissue segmentation.
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1. INTRODUCTION

MS is a neurodegenerative disease characterized by focal lesions throughout the white 

matter (WM) of the brain, which can extend to the boundary of the WM and gray matter 

(GM). In both Alzheimer’s disease (AD) and MS, white matter lesions (WMLs) appear to be 

hypointense in T1-weighted (T1-w) images, similar to GM or cerebrospinal fluid (CSF). 

Typically other contrasts such as T2-weighted (T2-w), proton density (PD-w) weighted, and 

FLuid Attenuated Inversion Recovery (FLAIR) are used to help distinguish lesions from 

GM and CSF. Lesion volumes are known to be correlated with the progression of many sub-

types of MS [1]. The contrast of magnetic resonance (MR) images is of fundamental 

importance for WML tissue classification. We note that it is well established that FLAIR 

images provide the best contrast for detection and quantification, whereas conventional T1-

w, T2-w, and PD-w spin echo sequences offer diminished contrast for WML [2]. Most recent 

lesion segmentation algorithms therefore depend heavily on FLAIR for WML identification 

[3–5]. However, FLAIR images can suffer from artifacts for a variety of reasons [6]. Fig. 1 
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shows an artifact-ridden acquired FLAIR and the corresponding tissue segmentation result. 

We intend to overcome this problem by reconstructing a FLAIR image using information 

from the other contrasts. Our reconstructed FLAIR does not exhibit the artifacts, because 

each of the T1-w, T2-w, and PD-w, images used are artifact free, and together they possess 

enough information to recreate the FLAIR tissue intensities.

Our work builds upon the ideas of image hallucination [7] which originally generated a 

high-resolution image from multiple low resolution acquisitions based on a textbook or 

atlas. The idea first gained traction in the medical imaging community with the work of 

Rousseau [8], and has since gained popularity and numerous applications from super-

resolution [9, 10], contrast synthesis [9, 11–13], and inhomogeneity correction [14]. Our 

approach is to treat the unknown FLAIR image as dependent on other known images and 

model the reconstruction of the FLAIR as a nonlinear regression of image patches drawn 

simultaneously from the co-registered T1-w, T2-w, and PD-w contrast images. The voxel 

intensity in MR is a function of many nuclear magnetic resonance (NMR) parameters like 

proton density (PD), longitudinal and transverse relaxation times (T1 and T2) and others. We 

would like to frame the problem of predicting the FLAIR voxel intensities as a nonlinear 

function of the other contrast image intensities—which themselves are also a function of the 

underlying NMR parameters. The nonlinear function is learned as a nonlinear regression 

from data by a bagged ensemble of regression trees [15] and is significantly faster and better 

than the state-of-the-art.

In this paper, we build upon our previous FLAIR reconstruction work [16] which used only 

T1-w and T2-w data and a sparse priors model to resolve the intensity of the unknown 

contrast. We expand the work to include the third contrast of PD-w to help improve the 

FLAIR reconstruction as well as reframing the problem in terms of a random forest based 

reconstruction [11]. We show that the reconstructed FLAIR (R-FLAIR) image matches very 

closely with the original high quality FLAIR image (T-FLAIR), while also providing an 

important surrogate image for use in a WML segmentation algorithm.

2. METHOD

We tackle the FLAIR reconstruction with an atlas based regression approach. Our atlas 

consists of ( , , , ), which have tissue contrasts of T1-w, T2-w, PD-w, and FLAIR, 

respectively. The atlas images have the same voxel resolution and are sampled at the same 

coordinates in space. The subject images are assumed to consist of the triple of ( , , 

) with the goal being to reconstruct  from the learned nonlinear relationships in the atlas 

quadruple. For several of our experiments we will have the true  available, to which we 

can compare the quality of the reconstruction. At the ith voxel of the atlas images , , 

and , 3D patches of size p × q × r are rasterized to form a d × 1 vector (d = pqr, p = q = r 

= 3, chosen empirically) for each of the three images. This triple of vectors is concatenated 

to form the 3d × 1 vector xi. xi and the corresponding intensity, yi, of the ith voxel in  form 

the independent and dependent variables, respectively, for our training data denoted as 〈xi, 

yi〉.
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We solve the regression problem generated by the training data 〈xi, yi〉 using random forests 

(RF) [17]. A RF consists of an ensemble of regression trees [15], with each regression tree 

partitioning the space of xi’s into regions based on a split at each node in the tree. During 

training, splits at a node are performed by randomly selecting one-third of the attributes and 

then determining the attribute in this subset that best minimizes a least squares criterion. We 

ensure that nodes with less than five data values are leaf nodes, thus avoiding over-fitting of 

the training data. The value of the dependent variable assigned at a leaf node is the mean of 

the yi’s which have accumulated in that leaf during training. The bagged ensemble of 

regression trees allows for greater robustness in the predictive power of the RF. In our 

experiments, our RF consists of 60 trees each learned from bootstrapped training data. We 

used patches sampled from data acquired from five MS subjects, ensuring equal 

representation of CSF, GM, WM, and WMLs. The bootstrapping is done by choosing with 

replacement N times, where N is the size of the training data set (~ 105 samples). To predict 

the FLAIR intensity for the subject image set, we construct the rasterized 3d × 1 vector, uj, 

similarly to that used for the training data. The uj’s are input into each of the regression trees 

in the trained RF. The output of each tree is the value of the leaf node the vector uj is 

assigned. We aggregate these values by computing their mean to produce a final output 

intensity for the jth voxel of the R-FLAIR image . Averaging the FLAIR intensity values at 

the leaf nodes of the RF lowers the peak values of the output FLAIR image. To avoid this, 

we linearly rescale the peak intensities of  to match those of a typical FLAIR image. 

Training takes ten minutes and the prediction phase takes less than ten seconds, for images 

of size 256 × 256 × 173.

3. RESULTS

3.1. Image Similarity

Our goal in reconstructing the FLAIR from corresponding T1- w (0:83 mm3, MPRAGE), T2-

w, and PD-w (Dual Spin Echo, 0:8 × 0:8 × 2:2 mm3) images is to provide an approximation 

to a T-FLAIR for defining lesions. Our data set consists of 49 MS subjects (44 test + 5 

training), with all the data registered to the MNI space and resampled at a 1 mm3 isotropic 

resolution. We used the T1-w, T2-w, and PD-w images for our R-FLAIR and compare it to 

the T-FLAIR image in the data set. Several inferior slices of the PD-w, T2-w, and FLAIR 

images—covering the cerebellum–are of considerably lower quality and were not used for 

evaluation.

We use the image similarity metrics of peak signal to noise ratio (PSNR), the universal 

quality index (UQI) [18], and the structural similarity index (SSIM) [19] for evaluation (see 

Table 1). UQI and SSIM have a range between 0 and 1, attaining the maximum if the T-

FLAIR and the R-FLAIR image are perfectly equal. Example results are shown in Fig. 2. 

The R-FLAIR is smoother than the T-FLAIR due to its intensities being produced by the 

averaging of 60 trees in the RF.

3.2. Image Segmentation

In this experiment we tested, using LesionTOADS [4], if the R-FLAIR can be used to 

provide reliable segmentation of brain tissues into CSF, GM, WM, and WMLs. 
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LesionTOADS takes co-registered T1-w and FLAIR images as input and generates a 

segmentation. We ran LesionTOADS with the original T1-w image in conjunction with 

either the T-FLAIR or R-FLAIR. From the LesionTOADS segmentation, we computed the 

Dice coefficient to compare the stability of our R-FLAIR to T-FLAIR, the results are shown 

in Table 2. The Dice coefficient is low for WMLs because of algorithm errors caused by 

artifacts in the T-FLAIR images—see Fig. 1 for an example— which are overcome in our 

R-FLAIR images. For those cases where the T-FLAIR image is devoid of artifacts, the 

segmentation differences between the T-FLAIR and R-FLAIR are minimal (see Fig. 3).

For the 44 test MS subjects, we have manual segmentations of the WMLs, from which we 

computed the Dice coefficient for the WMLs between the truth and the segmentations 

generated from each of T-FLAIR and R-FLAIR. The manual and T-FLAIR had a mean Dice 

score of 0.42 with a standard deviation of 0.27. Whereas, the R-FLAIR had a score of 0.38 

with a standard deviation of 0.21. The Dice coefficient as a metric can be misleading 

because of the small diffuse nature of lesions. Thus, we also looked at the absolute relative 

difference of the manual WML volumes and those calculated by LesionTOADS on either T-

FLAIR or the R-FLAIR. The ratio for T-FLAIR is 8.81, while for R-FLAIR it is 1.37, which 

is considerably less. Fig. 4 illustrates the lesion volumes for different subjects sorted in order 

of increasing manual lesion load. It is clear that using a R-FLAIR provides a more accurate 

lesion load estimation than a T-FLAIR—as the T-FLAIR has real-world artifacts that can 

confound any algorithm, not just LesionTOADS.

4. CONCLUSION

In this work, we demonstrated a method to reconstruct a FLAIR image from the 

corresponding T1-w, T2-w, and PD-w images; the reconstruction is principally for image 

processing. Our previous work [16] could not handle WMLs, and our use of balanced 

training data and a third contrast has resolved this problem. The R-FLAIR is very close to 

the T-FLAIR in terms of image quality (see Table 1). We have shown that our R-FLAIR 

leads to more reasonable segmentation results with LesionTOADS than the T-FLAIR (see 

Fig. 4), in comparison to a human rater. In some cases, the artifacts in the T-FLAIRs 

produced dramatically bad segmentations (see Fig. 1), which is not the case with our R-

FLAIRs.
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Fig. 1. 
The true FLAIR (T-FLAIR) shows visible artifacts which confound LesionTOADS and 

other lesion segmentation algorithms (not pictured), resulting in the misclassification of 

healthy WM as WMLs. Our reconstructed FLAIR (R-FLAIR) does not have the artifacts, as 

they are not present in the T1-w, T2-w, or PD-w images.
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Fig. 2. 
Example slices of true (T-FLAIR) and reconstructed FLAIR (R-FLAIR) for a subject.
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Fig. 3. 
LesionTOADS segmentations using true (T-FLAIR) and reconstructed FLAIRs (R-FLAIR).
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Fig. 4. 
Shown are WML volumes, ordered by increasing lesion load, for 44 MS subjects. The green 

is the manual segmentation, while the blue is the plot of LesionTOADS based on the T-

FLAIR and the red is LesionTOADS using our R-FLAIR.
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Table 1

Mean (Std. Dev.) of PSNR (in decibels), UQI, and SSIM values over 49 subjects.

PSNR UQI SSIM

25.58 (1.06) 0.88 (0.03) 0.87 (0.02)
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Table 2

Mean (Std. Dev.) of Dice coefficients based on LesionTOADS segmentation of the T-FLAIR and R-FLAIR.

WM GM CSF WML

0.96 (0.01) 0.99 (0.0005) 0.95 (0.01) 0.46 (0.22)
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