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Abstract

Brain imaging genetics is an emergent research field where the association between genetic 

variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits 

(QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis 

method that has the potential to reveal complex multi-SNP-multi-QT associations. We present 

initial efforts on evaluating a few SCCA methods for brain imaging genetics. This includes a data 

synthesis method to create realistic imaging genetics data with known SNP-QT associations, 

application of three SCCA algorithms to the synthetic data, and comparative study of their 

performances. Our empirical results suggest, approximating covariance structure using an identity 

or diagonal matrix, an approach used in these SCCA algorithms, could limit the SCCA capability 

in identifying the underlying imaging genetics associations. An interesting future direction is to 

develop enhanced SCCA methods that effectively take into account the covariance structures in 

the imaging genetics data.
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1. INTRODUCTION

Recent advances in acquiring multi-modal brain imaging and genome-wide array data 

provide exciting new opportunities to study the influence of genetic variation on brain 

structure and function. Research in this emerging field, known as imaging genetics, aims to 

identify associations between genetic factors such as single nucleotide polymorphisms 

(SNPs) and quantitative traits (QTs) such as neuroimaging phenotypes. Typical imaging 

genetics methods include: (1) massive univariate analyses [1] to quickly discover single-

SNP-single-QT associations, (2) regression analyses [2] to examine the joint effect of 
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‡Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 
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multiple SNPs on one or a few targeted QTs, and (3) bi-multivariate analyses [3, 4, 5] to 

examine complex associations between many SNPs and many QTs.

Sparse canonical correlation analysis (SCCA) [6] is a bi-multivariate analysis method that 

has been applied to both real [3] and simulated [4] imaging genetics data. Although SCCA 

produced promising results on relating hippocampal surface signals to candidate AlzGene 

SNPs [3], our recent SCCA analysis on relating brain-wide region of interest (ROI) 

measures (e.g., volume, thickness, gray matter density) to the AlzGene SNPs yielded 

unstable results. Following [4], which tested SCCA on simulated diffusion tensor imaging 

(DTI) and SNP data, here we propose a method to generate realistic SNP and brain ROI data 

with known underlying SNP-QT associations, test a few existing SCCA implementations on 

the data, compare their performance, and discuss future directions.

2. SPARSE CANONICAL CORRELATION ANALYSIS

We first describe the three SCCA algorithms evaluated in this work. Let n be the sample 

size, X (n × p matrix) be the genotype data containing p SNPs, and Y (n × q matrix) be the 

imaging data containing q QTs. CCA seeks linear combinations of variables in X and 

variables in Y, which are maximally correlated between Xwx and Ywy, that is:

(1)

where wx and wy are the canonical vector or weights.

Two major weaknesses of CCA are that it requires n to exceed p+q and that it produces 

nonsparse Aj and Bj which are difficult to interpret. To overcome these weaknesses, Witten 

et al. [6] proposed a penalized matrix decomposition (“PMD” in short) method by imposing 

L1 constraints onto wx and wy, which was ||wx|| ≤ c1 and ||wy|| ≤ c2. They assumed XTX = I 

and YTY = I, and implemented the PMD method by alternately performing the following two 

steps until convergence.

where P1 and P2 are the L1 penalty functions to yield wx and wy sparse. The first update 

takes the form , where S(x, Δ) = sgn(x)(|x| − Δ)+ is the soft thresholding 

operator and Δx ≥ 0 is chosen so that P1(wx) = c1. The second update takes a similar form by 

swapping x and y.

Parkhomenko et al. [7] developed a similar iterative algorithm as follows to implement 

SCCA.
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(2)

where , and Σxy is 

the covariance matrix between X and Y. One major difference between this method and 

PMD is that a diagonal matrix instead of an identity matrix was used to approximate the 

covariance matrices Σxx and Σyy. For convenience, we call this algorithm as “DIAG” in 

short.

Parkhomenko et al. [7] further extended DIAG to adaptive SCCA (“ADAP” in short) by 

adopting the adaptive lasso method. Now the update rule becomes as follows:

(3)

where  denotes the first singular vector obtained from a full singular value 

decomposition (SVD) of K. λwx and γ are sparseness parameters, which can be optimally 

tuned by nested cross validation. The update rule for  is likewise.

3. SYNTHETIC DATA GENERATION MODEL

To evaluate the performances of the three SCCA methods, we implemented a method to 

create realistic imaging genetics data with known underlying correlation structures. The 

major steps were as follows. (1)We started with real imaging genetics data, i.e., a SNP set 

and an imaging QT set. (2) The SNP data set X was not altered and was directly used as our 

simulated genetics data. (3) We estimated the covariance structure of the QT data. (4) We 

synthesized a QT data set with the same covariance structure and call that background QT 

data Ybg. Since Ybg was randomly drawn from a Gaussian distribution with a specified 

covariance structure, it was reasonable to assume there was no relationship between X and 

Ybg (see Figure 4(a, c) for an example). (5) We used the method described below to 

introduce a correlation between multiple SNPs and multiple QTs. (6) We repeated Step 5 

multiple times and incorporated these new correlations by altering the background QT data 

Ybg to yield our simulated imaging data Y.

Now we describe how to implement Step 5. Let XS be a subset of X and contains k SNPs of 

all the subjects. We can introduce a set of l correlated QTs YS using a method shown in 

Figure 1. In this synthetic correlation, l QTs are affected by k SNPs, and k ≪ p and l ≪ q. 

The error term can be used to adjust the strength of this k-SNP-l-QT correlation. In other 

words, the QT signal YS can be generated based on a subset of real SNP data XS as follows

(4)

where  is the pseudo-inverse of AS and e is noise.
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For each synthesized YSi, we can add αiYSi back to the corresponding columns in the 

background QT data Ybg to get the final simulated QT data Y. Parameter αi is specific to 

each synthesized correlation, and can be used to adjust the strengths between different 

synthetic correlations.

4. EXPERIMENTAL RESULTS

4.1. Real Data

The MRI and SNP data were downloaded from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (www.adniinfo.org). One goal of ADNI has been to test whether 

serial MRI, PET, other biological markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of mild cognitive impairment (MCI) and early 

AD. For up-to-date information, see www.adni-info.org.

Genotype data for the ADNI sample were collected using Illumina Human610-Quad 

Beadchip and underwent a standard quality control procedure. To accelerate the evaluation 

procedure, we focused on only the first 1000 (out of 9348) SNPs in chromosome 19, and 

729 ADNI-1 non-Hispanic Caucasian participants were included in this study. To generate 

phenotype data, MRI scans at baseline for the ADNI-1 participants were pre-processed using 

FreeSurfer [1]. Bilateral means of 53 ROIs were calculated and used as original imaging 

QTs. The correlation structures and histograms of correlation coefficients of the real SNP 

and QT data are shown in Figure 2 and Figure 3(a, b).

4.2. Synthetic Data

To introduce synthetic correlations, we selected several SNP blocks from the genotype data, 

where a block indicated a set of highly correlated neighboring SNPs. Eq. 4 was used to 

generate the QT data. In our experiments, we created two different multi-SNP-multi-QT 

correlations. The first correlation was created between 12 SNP variables from three blocks 

( and , see Figure 2 and Table 3) and 12 imaging 

variables from four blocks ( , containing 4, 4, 1 and 3 QTs respectively, see Table 3). 

The second correlation was created between 9 SNPs from two blocks (  and 

, see Figure 2 and Table 3) and 10 imaging variables from four blocks ( , 

containing 3, 3, 1 and 3 QTs respectively, see Table 3). Since Eq. 4 is under-determined, the 

QT blocks could be easily created so that QTs within each block have high correlation and 

QTs between blocks have low correlation.

We created three synthetic data sets: SET1 contained the first correlation only, SET2 

contained the second correlation only, and SET3 contained both correlations. The 

correlation matrix and histogram of a SET1 type synthetic QT data set are shown in Figure 

3(c, d), which are similar to those in the real QT data shown in Figure 3(a, b). Shown in 

Figure 4 are the pairwise SNP-QT correlations for simulated data before and after adding 

correlations.
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4.3. SCCA Results

We applied three SCCA implementations (i.e., PMD, DIAG and ADAP) to three types of 

simulated imaging genetics data sets (i.e., SET1, SET2, and SET3). Based on the known 

underlying correlations, precision ( ) and recall ( ) were calculated 

to evaluate the method performances. Table 1 shows the results for SET1 and SET2, and 

Table 2 shows the results for SET3. DIAG and ADAP outperformed PMD on precision, 

while PMD performed better on recall. Between DIAG and ADAP, the ADAP performed 

slightly better for SET1 and SET2, and the results on SET3 were mixed. Table 3 shows the 

details on the number of selected SNPs in each block. While SNPs from some blocks could 

be all identified in some cases with a single strong correlation (e.g., SET1 or SET2 with α = 

0.8), in cases with multiple or weak correlations (e.g., SET3 with α = 0.4) only very few 

SNPs could be identified from each block. QTs could not be all identified from each block 

in most cases. This indicates that the standard SCCA methods might not be sufficient to 

reveal imaging genetics associations while covariance structures within imaging or genetics 

(e.g., block diagonal in our data) are not adequately modeled. In addition, PMA produced 

many more false positives than DIAG and ADAP. In the extreme case (i.e., SET3 with α1 = 

0.4 and α2 = 0.4), PMA returned all the QTs (53 out of 53) and many SNPs (145 out of 

1000). But the false positives in DIAG and ADAP were relatively less. Note that DIAG and 

ADAP use diagonal matrix to approximate the covariance structure in the data, which 

contains more information than the identity matrix used in PMD. This further indicates that 

adequate modeling of covariance structure in the SCCA implementation is important.

5. CONCLUSIONS

In this paper, initial efforts toward evaluating the sparse canonical correlation analysis 

(SCCA) methods in brain imaging genetics applications were presented. This included a 

data synthesis method to create a set of realistic imaging and genomic data with known 

underlying SNP-QT correlations, application of three SCCA algorithms to the synthetic 

data, and comparative study of their performances. These initial empirical results suggest 

that, although SCCA has the potential to reveal multi-SNP-multi-QT associations, its 

capability in effectively relating a set of correlated imaging measures to a set of correlated 

genomic measures is inadequate. One possible reason is that the existing implementations 

approximate the covariance matrices using either the identity matrix or diagonal matrices. 

One future topic is to evaluate additional SCCA implementations or develop new ones that 

take into account the covariance structures in the data (e.g., [4]). Once effective SCCA 

implementations are identified, another future topic is to apply those to real imaging 

genetics studies.
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Fig. 1. 
Synthetic correlation between k SNPs and l QTs.
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Fig. 2. 
Shown in the left is the correlation matrix of the SNP data and two SNP sets selected for 

introducing SNP-QT correlations. One set contains three SNP blocks  (shown as 

B1–B3), and the other contains two SNP blocks  (shown as B4–B5); see also 

enlarged insets for correlations among these two sets of SNPs. Shown on the right is the 

histogram of correlation coefficients of the SNP data.

Sheng et al. Page 8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
(a) Correlation matrix of real QT data. (b) Histogram of correlation coefficients of real QT 

data. (c) Correlation matrix of simulated QT data (SET1 with α=0.40). (d) Histogram of 

correlation coefficients of the simulated QT data.
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Fig. 4. 
(a) Correlation matrix between SNP data X and QT background data Ybg. (b) Correlation 

matrix between SNP data X and simulated QT data Y after adding correlations. (c) 

Histogram of correlation coefficients between X and Ybg. (d) Histogram of correlation 

coefficients between X and Y.
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