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Abstract

Mild cognitive impairment (MCI) is an intermediate stage between normal aging and Alzheimer's 

disease (AD), and around 10-15% of people with MCI develop AD each year. More recently, MCI 

has been further subdivided into early and late stages, and there is interest in identifying sensitive 

brain imaging biomarkers that help to differentiate stages of MCI. Here, we focused on anatomical 

brain networks computed from diffusion MRI and proposed a new feature extraction and 

classification framework based on higher order singular value decomposition and sparse logistic 

regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging 

Initiative, our proposed framework showed promise in detecting brain network differences that 

help in classifying early versus late MCI.

Index Terms

Mild Cognitive Impairment; diffusion MRI; brain network; high order SVD; classification

1. Introduction

Mild cognitive impairment (MCI) involves the onset and evolution of cognitive impairments 

beyond those expected based on the age and education of the individual, but which are not 

significant enough to interfere with their daily activities [1]. It is also considered to be a 

transitional stage between normal aging and dementia, as every year, ∼10% to 15% of 

people with MCI progress to probable AD [2] However, not all people with MCI deteriorate 
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cognitively and some even get better. More accurate accurate classification of MCI subtype 

is crucial for disease detection and treatment evaluation.

Mild cognitive impairment is a “clinical” diagnosis representing a doctor's best professional 

judgment about the reason for a person's symptoms. There are currently no tests or 

procedures to demonstrate conclusively that a person has MCI. Impairment on cognitive 

tests is usually defined as performance at least 1.5 standard deviations (SD) below the age-, 

sex- and education-adjusted mean on a standardized test. In an attempt to define an even 

earlier point in time for disease detection, the recent extensions of the North American 

ADNI project (termed, “ADNI-GO” and ADNI-2) introduced the distinction of early versus 

late MCI. Late MCI (LMCI) refers to the original definition (performance of 1.5 SD below 

the normative mean), whereas in early MCI (EMCI), impairment is defined as performance 

in the range 1.0-1.5 SD below the normative mean on a standardized tests [3].

Recently studies of brain connectivity – including anatomical connectivity assessed with 

diffusion MRI – have attracted increasing attention. Reconstruction and modeling of brain 

networks provides an alternative way to investigate brain diseases on a holistic scale. More 

and more studies show that brain network properties are altered in certain disorders, such as 

bipolar illness [4, 5], body dysmorphic disorder [6], and even HIV/AIDS [7]. Even, brain 

networks and their features depend to some extent on the choice of fiber tracking algorithm 

used to infer the trajectories of pathways in the brain [8-10]; also, dozens of tractography 

algorithms are now available [11-17] yielding visually very different brain networks. In this 

study, we adopted tensor-based fiber assignment by continuous tracking (FACT) algorithm 

[12] to compute the brain network. Tensor-based FACT can yield false positive fibers which 

may add noise to computed network properties, but FACT is still one of the most widely 

used tractography algorithms, and it is simple and flexible. Here we propose a novel 

framework for network classification, with the goal of improving diagnostic classification 

based on networks. We also set out to show how this new framework could be applied to 

noisy networks (such as those derived from FACT) and used for differentiating EMCI from 

LMCI.

2. Methods

Figure 1 illustrates the basic idea of our proposed framework for brain network classification 

using higher order singular value decomposition (HO-SVD) and sparse logistic regression 

(Sparse LG). Its two component techniques are explained below.

2.1 HO-SVD

In machine learning and data mining, SVD is a powerful tool for dimension reduction. The 

SVD of a matrix X ∊ ℝn×m is given by X = UΣVT, where U ∊ ℝn×n and V ∊ ℝm×m are 

orthogonal matrices and Σ ∊ ℝn×m is a rectangular diagonal matrix. The diagonal entries of 

Σ, known as singular values, are non-negative and assumed to be in descending order.

The higher order SVD (HO-SVD) is one common generalization of SVD from matrices to 

tensors [18]. In HO-SVD, a tensor  ∊ ℝI1×I2×…×IN is decomposed as
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in which

1. U(k) ∊ ℝIk×Ik, k = 1, …, N are orthogonal matrices where the i th column of U(k) is 

the i th k-mode singular vector.

2.  ∊ ℝI1×I2×…×IN is the core tensor which is of the same size as , and has the 

following properties:

• For any 1 ≤ k ≤ N, let ik and jk be the subtensors obtained by fixing the kth 

index to ik and jk, 1 ≤ ik, jk ≤ Ik, then 〈 ik, jk〉 = 0 for ik ≠ jk;

• For 1 ≤ k ≤ N,

The Frobenius-norms ‖ ik = i ‖, 1 ≤ i ≤ Ik are the k-mode singular values.

The kth mode singular matrix U(k) can be obtained as the left singular matrix of the kth mode 

unfolding matrix of tensor . After obtaining all N singular matrices U(1) … U(N), the core 

tensor  is given by

Inspired by the dimension reduction via SVD in the 2D case, we propose to reduce the 

feature dimensions, using higher order SVD. Similar to the matrix case, the ordering 

assumption for tensor singular values suggests that most of the information contained in a 

tensor may be expressed by the first few “components”. Let the first mode of data tensor 

correspond to the sample size n (i.e., I1 = n) and the remaining modes correspond to feature 

dimensions. Then, by keeping the largest R1, …, RN singular values for each mode, a 

reduced tensor with size n × R2 × R3 × … × RN can be obtained by

where  =  ×1 Ũ(1)T ×2 Ũ(2)T … ×N Ũ(N)T is a tensor with size R1 × R2 × R3× … ×RN, Ũ(k) 

∊ ℝIk×Rk, 1 ≤ k ≤ N,  is attained by keeping the first R1, …, RN. The proposed dimension 

reduction of the tensor is also analogous to principal components analysis [19] for a matrix 

input. Instead of the original tensor, we propose to use the reduced tensor as the new input 

data for classification.
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2.2 Sparse Logistic Regression

Let x ∊ ℝm be a sample vector and y ∊ {−1, +1} be a binary outcome. The logistic regression 

model is given by:

where w ∊ ℝm and c ∊ ℝ are coefficients, and Prob(y|x) is the posterior probability. The 

empirical logistic loss is measured by the negative log-likelihood and the average logistic 

loss is given by

The unknown coefficients w and c can be computed by minimizing the logistic loss, and this 

involves a smooth convex optimization problem. However, when dimension m is far larger 

than the sample size n, solving the logistic regression problem is ill-posed, and the learned 

model may suffer from the over-fitting problem.

Sparse logistic regression embeds the feature selection into classification using the Lasso 

penalty [20] which results in a sparse solution for w. The sparse logistic regression problem 

is formulated as:

where the l1 norm of w, i.e., ‖ w ‖1, is the Lasso penalty and λ > 0 is the regularization 

parameter that controls the sparsity of the solution.

3. Experiment Design

3.1 Subject demographics and image acquisition

Data used in this study were obtained from ADNI2, the second stage of the Northern 

American Alzheimer's Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu). In 

total, 112 subjects were analyzed; of these, there were 73 people with EMCI (mean age: 

71.34±11.57, 47 males) and 39 with LMCI (mean age: 72.32±5.83, 24 males).

Each subject underwent whole-brain MRI scanning on 3-Tesla GE Medical Systems 

scanners. T1-weighted SPGR (spoiled gradient echo) sequences (256×256 matrix; voxel size 

= 1.2×1.0×1.0 mm3; TI=400 ms; TR = 6.98 ms; TE = 2.85 ms; flip angle = 11°), were 

collected as well as diffusion-weighted images (DWI; 256×256 matrix; voxel size: 

2.7×2.7×2.7 mm3; scan time = 9 min; more imaging details may be found at http://

adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf). 46 separate 
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images were acquired for each DWI scan: 5 T2-weighted images with no diffusion 

sensitization (b0 images) and 41 diffusion-weighted images (b=1000 s/mm2). The DWI 

protocol for ADNI was chosen after a detailed evaluation of different protocols that could be 

performed in a reasonable amount of time; we reported results of these comparisons 

previously [21, 22]. All T1-weighted MR and DWI images were checked visually for quality 

assurance to exclude scans with excessive motion and/or artifacts; all scans were included.

3.2 Network Computation

Each subject's brain network was computed using the method described in [23]. In brief, 

each subject's DWI was preprocessed (such as corrected for eddy current distortion and 

motion as well as removal of non-brain tissue) using FSL toolbox (http://

fsl.fmrib.ox.ac.uk/). Then whole brain tractography was computed using tensor-based fiber 

assignment by continuous tracking (FACT) algorithm [12] implemented in diffusion toolkit 

(http://trackvis.org/dtk/). 113 cortical and subcortical ROIs were defined using the Harvard 

Oxford Cortical and Subcortical probabilistic atlas [24]. For each pair of ROIs, the number 

of detected fibers connecting them was determined from the FACT tractography. A fiber 

was considered to connect two ROIs if it intersected both of them. This process was 

repeated for all ROI pairs, to compute a whole brain fiber connectivity matrix. This matrix is 

symmetric, by definition, and has a zero diagonal (no self-connections; please see [23] for 

details). To avoid possible computation bias in the later feature extraction and evaluation 

sections, we normalized each matrix by the maximum value in the matrix, as matrices 

derived from different subjects have different scales and ranges. This normalized network 

will serve as the feature for the classification.

3.3 Feature extraction and classification

Based on a total of 112 subjects' 113×113 normalized networks computed in the above 

section, we compared three feature extraction methods:

1. Raw features: for each subject, the feature vector was constructed by stacking all 

the entries of the upper triangular matrix, since the brain matrix is symmetric. So 

each subject has 6328 (=113×112/2) features. Thus, we obtained the 112 (subjects) 

× 6328 (features) matrix as the input to Sparse LG.

2. SVD: We first built the raw feature matrix and then center this matrix by 

subtracting the means for each column. We use the top 10 principal components as 

the input for Sparse LG.

3. HO-SVD: We reduce the dimension of data tensor to 112×10×10 by keeping the 

largest 10 singular values for each mode. Then, we construct the feature vector for 

each subject by stacking the entries of the reduced data matrix. This constructed 

feature vector then serves as the input for Sparse LG.

After feature extraction, we normalize each feature column of the input data matrix by 

subtracting the mean value from it and dividing it by the standard deviation. Since the 

outcome distribution is highly imbalanced, we used under-sampling to mitigate the bias 

caused. For each training/testing procedure, 85% LMCIs and EMCIs were randomly drawn 

as the training set, while the remaining subjects were used for testing. We then ran Sparse 
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LG on the training set and evaluate classification performance on the test set, with 

parameters selected by 5-fold cross-validation. We repeat the training/test procedure 20 

times, and report the mean and standard deviations in classification performances including 

accuracy, sensitivity, specificity, area under the curve (AUC) and the balanced accuracy 

which is the mean of sensitivity and specificity. The Sparse LG model is implemented using 

the Sparse Learning with Efficient Projections package.[25] In our experiments, LMCI was 

designated as the positive class and EMCI was the negative class.

4. Results and Discussions

There was no significant difference (P=0.53) in average age between the subjects with 

EMCI and LMCI. The gender ratio (the number of males over the total number of subjects) 

was also comparable (0.64 for EMCI and 0.62 for LMCI). Figure 2 shows the mean brain 

network for EMCI and LMCI. Although EMCI and LMCI have very similar visual patterns 

in the mean network, the mean network difference plot indicates there are indeed differences 

in some matrix cell values. When we performed paired T-test on each cell of the network 

between EMCI and LMCI and the false discovery rate method (FDR) was used to correct for 

multiple comparisons, our results indicated there were no element-wise differences between 

the group mean LMCI network and the group mean EMCI network.

Then we conducted feature extraction and classification experiments as described in Section 
3.3. Table 1 summarizes the classification performance, and Table 2 lists the Student's T test 

P-values. Our results indicated both SVD and HO-SVD performed significantly better than 

raw features; moreover, our proposed HO-SVD has significant advantages in Accuracy, 

Specificity and Balanced Accuracy, compared to the standard SVD approach. It is well-

known that FACT-derived brain networks have a fair amount of noise, due to the substantial 

proportion of false positive fibers generated. Our experimental results suggest that HO-SVD 

is quite effective in handling feature reduction for these noisy networks. This conclusion 

was further supported by conducting the same experiments on EMCI and LMCI's brain 

networks derived from another three variants of FACT - the 2nd-order Runge-Kutta method 

[11], and the interpolated streamline [14] and tensorline [13] methods.

5. Conclusion

In this study, we proposed a novel framework to differentiate EMCI and LMCI using 

diffusion MRI derived structural networks, in conjunction with a sparse machine learning 

method. Experimental results indicated that our proposed framework performed better than a 

more traditional method (SVD or direct comparisons of matrix elements) in our network 

classification tests. Future studies will extend this framework to multi-task classification for 

all stages of Alzheimer's disease, as well as including data from other modalities (anatomical 

MRI, PIB-PET) that may assist with classification.
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Figure 1. Basic workflow for network feature reduction and classification
The approach involves computing brain networks as connectivity matrices, but then stacking 

them up, across subjects, as a 3D tensor and performing feature reduction and sparse 

methods for classification.
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Figure 2. 
Mean brain network for EMCI, LMCI and the difference (EMCI-LMCI). Each cell of the 

network represents the connection strength (or connectivity) between each pair of ROIs; the 

ROIs are indexed from 1 to 113. (Please refer to [23] for ROI list details).
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Table 1

Classification Performance for three feature extraction methods. Bal. ACC represents balanced accuracy.

Raw SVD HO-SVD

Accuracy 0.59±0.12 0.59±0.08 0.65±0.07

Sensitivity 0.51±0.26 0.71±0.15 0.78±0.14

Specificity 0.61±0.16 0.58±0.09 0.64±0.08

AUC 0.55±0.13 0.68±0.10 0.70±0.10

Bal. ACC 0.56±0.10 0.64±0.09 0.71±0.07
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Table 2

Student's t test P-value. “Bal. ACC” denotes the balanced accuracy. A Bonferroni correction was adopted 

here, to account for multiple comparisons. As there are five measures, the corrected P threshold in each 

column is 0.05/5=0.01. P-values less than 0.01 have been marked in red.

SVD>Raw HO-SVD>Raw HO-SVD>SVD

Accuracy 0.53 0.03 6.46e-03

Sensitivity 2.68e-03 1.24e-04 0.08

Specificity 0.78 0.24 0.01

AUC 5.62e-04 9.91e-05 0.26

Bal. ACC 4.73e-03 2.61e-06 9.58e-03
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