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ABSTRACT

Measurement of the proliferative behavior of human embry-
onic cells in vitro is important to many biomedical applica-
tions ranging from basic biology research to advanced appli-
cations, such as determining embryo viability during in vitro
fertilization (IVF) treatments. Automated prediction of the
embryo viability, by tracking cell divisions up to the 4-cell
stage, improves embryo selection and may lead to increased
success rates in IVF pregnancies. Recent research in cell bi-
ology has suggested that tracking cell divisions beyond the
4-cell stage further improves embryo selection. In the cur-
rent state-of-the-art, later events (e.g., time to reach the 5-cell
stage) can only be assessed manually. In this work we au-
tomatically predict the number of cells at every time point,
and predict when the embryo divides beyond four cells in a
time-lapse microscopy sequence. Our approach employs a
conditional random field (CRF) that compactly encodes vari-
ous aspects of the evolving embryo and estimates the number
of cells at each time step via exact inference. We demonstrate
the effectiveness of our method on a data set of 33 developing
human embryos.

1. INTRODUCTION

Human assisted reproduction methods such as in vitro fertil-
ization (IVF) are widely applied to treat infertility. The suc-
cess of these methods relies on identifying the most viable
embryos. In most cases embryologists select embryos by vi-
sual examination, which requires expert time and is prone to
error. Recent advances in time-lapse microscopy technologies
have led to the discovery of non-invasive prediction markers
of embryo quality. Underlying these discoveries, the proper
timing of embryo development has long been recognized as a
critical factor in assessing embryo quality.

The first set of quantitative timing parameters reported
by Wong et al. [12] have been confirmed to be correlated with
the quality of human embryos and therefore can predict the
viability of embryos as early as the second day post fertiliza-
tion. Recently, additional parameters correlating with human
embryo development have been added to complement these
parameters. These additional developmental timing biomark-
ers include later events such as the time to reach the 5-cell

Fig. 1. Complexities of the developing embryo. (a) Fragmentation
in the 2-cell stage. (b) Fragmentation and occlusion in the 4-cell
stage. (c)—(d) Occlusion in the 4-cell stage. (e)—(f) Occlusion in the
5-cell stage.

stage, the length of the 5-8 cell interval and the timing of the
fourth cleavage [1, 9].

Precise measurement of these timing parameters requires
automated tools for tracking cell divisions. Automatic track-
ing of human embryonic cell divisions is currently limited
to detecting cell divisions from the 1-cell stage to the 4-cell
stage [1, 3, 10, 12]. This problem is challenging due to poor
morphology of the embryos, self-occlusion, fragmentation
and imaging limitations (e.g., see Fig. 1 (a)—(d)). Automated
tracking of cell divisions beyond the 4-cell stage is a more
difficult problem due to the increasing complexity of the
developing embryo and the broad spectrum of biological
phenomena that can occur (e.g., see Fig. 1 (e)—(f)). These
complications demand more sophisticated techniques and
impose a great technical challenge for an automated algo-
rithm. Divisions to more than five cells become increasingly
difficult to detect as cells tend to overlap more. Even human
experts often disagree on the cell transition time [10]. To go
beyond five cells it may therefore be necessary to keep track
of the cells in several focal planes [9].

Most existing approaches to detect cells and cell divisions
in microscopy images [2, 8, 13] rely on staining cell nuclei
and cannot be applied to necessarily non-invasive human em-
bryonic cells. Many other prior approaches [6, 7] are designed
for cells other than the human embryonic cells and thus do not
handle the various complexities involved in working with hu-
man embryonic cells.

The recent literature shows examples of applying proba-
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Fig. 2. Preprocessing a light microscopy image of a developing
embryo. (a) Petri Dish. (b) Raw image. (c) Hessian image.

bilistic graphical models (PGM) to improve the selection of
the viable embryo which may improve the success rates of
IVF programs [4]. For example, Moussavi et al. [10] per-
formed simultaneous segmentation and tracking in human
embryonic cells up to the 4-cell stage. Their method uses
geometric primitives based on cell boundary fragments in a
conditional random field (CRF) model. However, embryos
beyond the 4-cell stage are more complex, and cell segmen-
tation and tracking becomes more challenging to achieve. In
our previous work [3], we proposed a linear chain Markov
model for detection and localization of cells in early stage
embryo development (up to the 4-cell stage). This framework
uses cell spatial information along with spatial continuity en-
forced over an entire sequence of frames. However, the main
weakness of this approach is that the label space is exponen-
tial in the number of cells and thus does not easily go beyond
the 4-cell stage. We experimentally compare our results to
our previous approach [3] up to the 4-cell stage. These suc-
cessful applications have motivated us to investigate PGMs
for monitoring embryos beyond the 4-cell stage.

In this work we focus on automating measurement of the
time to reach the 5-cell stage. We present a conditional ran-
dom field to predict the cell stage of a human embryo (i.e., the
number of cells) during the time-lapse imaging process up to
five or more cells. Our framework integrates a rich set of
discriminative features and visual cues. The proposed model
avoids segmentation and tracking of individual embryo cells
and can predict the number of cells and detect cell divisions
directly in an image sequence.

2. METHODOLOGY

We perform automated monitoring of the embryonic cells be-
yond the 4-cell stage by infering the number of cells within
each frame of a time-lapse microscopy sequence using a CRF
model.

2.1. Image Pre-processing

Images of the developing embryos are acquired by the
Eeva™ System developed by Auxogyn, Inc. Embryos
are placed in a petri dish (see Fig. 2(a)) inside the incubators
of IVF clinics and images are taken at five-minute intervals
over a period of three to five days. We process the images to
remove the dish boundary from the raw images (see Fig. 2(b))
by applying a rough embryo mask (see [3] for details).

2.2. Model Description

Given microscopy images of the evolving embryo, our goal
is to predict the number of cells over time. We pose this
problem in a CRF framework that integrates multiple visual
cues and combines cell transition information of the evolv-
ing embryo. Formally, we represent the number of cells at
time ¢ with a discrete random variable N;. Each variable N;
fort € {1,...,T} can take on a label from the set £={],
..., N™>} where the last label corresponds to N™**-or-more
cells in the embryo. As will be shown in the remainder of this
section, our formalism admits efficient exact inference over a
complete sequence of microscopy images.

We begin by performing independent frame-based predic-
tion and then incorporate neighboring frame dependencies to
the labeling via a smoothing pairwise term. We further im-
prove the labeling by adding a cell transition predictor to the
framework via a learned pairwise term.

2.2.1. Frame-Based Prediction

To perform frame-by-frame prediction of the number of cells
we employed a boosted decision tree (BDT) classifier trained
on a rich set of 88 handcrafted features. In particular, we used
frame-based and cell evolution features [3]. Briefly, these fea-
tures are derived from the intensity and Hessian image gray-
level co-occurrence matrices (GLCM), convex hull, intensity
variance, average intensity, circularity, concave regions, con-
vex hull and eccentricity measures. The Hessian image is ob-
tained from the raw image by applying a Hessian operator fol-
lowed by eigenvalue analysis to highlight the cell membrane
(see Fig. 2(c)). The frame-based features are computed from
each frame, and cell evolution features are computed by tak-
ing the absolute difference between the current frame feature
values and the corresponding feature values in the first frame
(for an example of a frame-based feature see Fig. 3(a)).

After extracting these features for each frame a classifier
is constructed by learning one-versus-all BDT classifiers for
each cell cardinality separately. Once learned, their outputs
are calibrated via a multiclass logistic classifier [11]. For pre-
diction the classifier takes the feature vector of a frame as
input and returns a probability distribution P(N;) for each
frame ¢t € {1,...,T}.

2.2.2. Adding Dependence to the Predictions

The frame-based prediction approach performs independent
predictions using visual cues of the current frame only. In
sequential data, as ours, predictions for the current frame are
influenced by neighboring frames too. In some cases neigh-
boring frame influence is vital. For example, sometimes a cell
goes out of view by being completely occluded for a frame or
two. Here neighboring frame influence can be captured by a
CRF model with unary and pairwise terms.

Under the CRF formalism, instead of independent frame-
based predictions, labeling/prediction corresponds to assign-
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Fig. 3. Illustration of a (a) frame-based feature, (b) cell transition prediction feature. (c) Cell transition probabilities (cell transition prediction
classifier) for a sequence. ”Gt transitions” from human labeled grund truth.

ing a label to each variable to determine the best overall label-
ing for the complete sequence. Formally, let N; € £ denote
the label assigned to frame ¢. Then we can define the energy
of a complete labeling over all frames 1,...,7 as

T T—1
E(Ny,...,Nr) = > %/ (Ne) + A Y 4r i1 (Ne, Nega), (1)
t=1 t=1

where the unary term (1)) measures the consistency between
the evidence of the frame and its label. We use the negative
log-probability of the learned frame based classifier as a unary
term.

The pairwise term (¢)f) measures the consistency between
neighboring frames by penalizing adjacent frames for taking
different labels. The non-negative constant A\ trades-off the
strength of the pairwise term against the unary term and is
chosen by cross-validation on the training set. Concretely,
the pairwise term scores the compatibility of labels [V; and
Ny, for two consecutive frames. Since we wish to capture
cell division events we use a simple model that enforces the
number of cells not to decrease from time ¢ to time ¢ + 1,

0, if Nt <N,
w5t+1(Nt7Nt+1) = { Ve = IVe41

o0, if Ny > Nt+1 (2)

We seek the most likely number of cells for each frame, and
ultimately the most likely sequence. This corresponds to the
assignment that minimizes E(Ny, ..., N7 ), which can be ob-
tained efficiently by dynamic programming.

2.2.3. Improving the CRF Model

Instead of simply encoding monotonicity of the number of
cells we also want our pairwise term to influence the labels
by scoring when cell division occurs. This requires predic-
tion of cell divisions. To this end we use a BDT classifier that
outputs the probability to have a transition. In addition to the
features described above (Section 2.2.1), this classifier relies
on a set of 46 features designed to capture transitions. These
features are computed by taking the difference between the
frame-based feature values of the consecutive frames. For ex-
ample, the intensity variance between two consecutive frames
is high when a transition occurs (for an example see Fig. 3(b)).

More specifically, for training, frames with manual annotation
of cell divisions are used as positive examples and all frames
in the sequences that do not contain transitions as negative
examples. For testing, the BDT produces the probability p?,
that any two frames ¢ and ¢ 4 1 contain a cell transition (for
an example of a complete sequence see Fig. 3(c)). Our model
incorporates the classifier probability p%, on the cell transition
for each time slice in the above-mentioned chain CRF via a
pairwise term. It penalizes increase in the number of cells
when a transition is not likely to happen as

b 1 —ptD7 if Ny < Nt+1
Yre41(Ne, Ney1) = ph,s if Ne = Nea 3)
0, if Ny > Nt+1

Incorporating additional cues via the pairwise term does not
increase the model complexity in terms of additional variables
or tree width, and inference remains exact and efficient [5].

3. EXPERIMENTAL RESULTS

We evaluated the proposed approach on 33 time-lapse image
sequences consisting of a total of 16,015 frames (with 21.7%,
28.4%, 1.8%, 28.7%, 19.5% of samples for 1 to 5-or-more
cell cardinality, respectively). The sequences include em-
bryos from eight different patients and show a certain degree
of variation such as extra cellular material artifacts and cell
reabsorption. We evaluated our method using leave-one-out
cross-validation on the 33 sequences and compared it against
our previous method [3] for up to the 4-cell stage on the same
12 sequences used there. For ground truth, the sequences
were manually annotated for cell transitions. An important
consideration for performance is interpanelist variation on the
cell transition times [10]. So in our experiments a detected
division frame is considered a true positive if it is within +3
frames to the ground truth.

We evaluated our method on the tasks of predicting the
number of cells and localizing the cell division for N™* =
4 and N™* = 5. Results are reported on three variants of
our method: i) Frame Based Prediction (FBP), ii) CRF with



1-cell 2-cell 3-cell 4-cell S-cell Avg Overall Trans Acc (Avg)
FBP 98.4 96.0 59.4 97.2 — 87.8 96.5 16.4
Nmar _ 4 CRF 99.0 98.1 60.8 97.7 — 88.9 97.4 6.2
o CRF+TP 100 99.7 88.5 99.8 — 97.0 99.6 0.7
FBP 96.8 94.8 63.3 85.7 87.7 85.7 90.7 21.8
N™® =5 CRF 98.2 96.5 66.1 87.2 91.3 87.9 92.7 9.9
CRF+TP 100 99.7 82.9 94.7 93.5 94.2 96.8 4.0

Table 1. Number of cells prediction accuracy (%) and cell transition accuracy (number of frames).

405 45

Fig. 4. Number of cell prediction results for (non-consecutive)
frames of two sequences. Here, the number inside the parentheses is
the ground truth and the number outside the parentheses represents
the prediction.

Models Cell Stg. Pred. Cell Trans. Acc. Exec.(s)
Khan et al. [3] 91.6 1.2 373.8
CRF+TP 92.4 2.5 7.0

Table 2. Baseline comparison: Cell stage prediction (%), cell tran-
sition accuracy (mean abs. diff.) and execution time per frame (sec).

monotonicity pairwise (CRF), and iii) CRF with learned cell
transition probability pairwise term (CRF+TP).

We first evaluated our method on the task of predicting
the number of cells in each frame (see Table 1). For both
N™* = 4(99.6%) and N™* = 5 (96.8%) the CRF+TP vari-
ant attained the highest overall accuracy followed by the CRF
and then FBP. Fig. 4 shows examples of predicted numbers of
cells. We see slightly lower performance on the 3-cell stage
due to the scarcity of the 3-cell stage in the dataset (1.8%).

We also evaluated how well we predict the time of the cell
divisions over the sequences. Here we report the mean abso-
lute difference between the predicted division time (i.e., num-
ber of frames) and our hand labeled ground truth transitions
(see Table 1). The overall best accuracy of 0.7 and 4.0 is
achieved by the CRF+TP variant for both N™* = 4 and
N™#* = 5 respectively. This equates to 3.5 and 20 min-
utes deviation between the algorithm and the human expert
for N™® = 4 and N™* = 5, respectively. The frame based
variant performs poorly here because of the absence of influ-
ence from neighbouring frames in the model. Fig. 5 illus-
trates the mean cell transition error for each of the sequences.
As clearly evidenced by the figure, the 4-to-5-or-more transi-
tion error is dominated by three of the 33 sequences. One of
these sequences has high inter panelist disagreement on cell
transition time and the other two sequences are affected by
noise (e.g., fragments) in their embryo masks (Section 2.1).
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Fig. 5. Mean cell transition error (in number of frames) for each

sequence. Sequences are sorted from lowest to highest error.

We see substantial improvement in performance on all
metrics by adding a smoothness constraint (CRF) and fur-
ther by adding additional information on the cell transitions
(CRF+TP). In particular, for N™** = 5 and for the two tasks
(i.e., predicting the number of cell and the cell divisions), an
improvement of 2.0% and 11.9 frames, respectively is ob-
tained with the chain CRF over the FBP variant, and a further
improvement of 4.1% and 5.9 frames respectively, is achieved
by incorporating cell transition prediction in the CRF. Thus,
for our problem the smoothness constraint is vital. Further
addition of visual cues, such as cell transition information,
enriches the underlying model and results in improving the
overall performance.

In Table 2, we compare our results against our previous
method [3] on the same subset of 12 sequences used in Khan
et al. [3]. Note that our approach produces similar results, but
is much faster. Also, our previous approach [3] is limited to
predictions up to the 4-cell stage.

4. CONCLUSION

Recently reported embryo viability biomarkers include events
that involve embryo monitoring beyond the 4-cell stage, such
as time to reach five cells, which can only be assessed manu-
ally to date. Previous works focused on up to the 4-cell stage
only and are not efficient or capable of going beyond the 4-
cell stage. In this work we proposed a model that is capa-
ble of predicting beyond it. This will provide an objective,
standardized embryo quality assessment free of human biases
and hopefully will improve IVF outcomes. As future work
we would like to incorporate cell location and cell tracking
information for these later events.
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