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⋆ INRIA, équipe Carmen, Centre Bordeaux Sud-Ouest, France
†LIRYC, L’Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux
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ABSTRACT

We present a new mathematical approach for solving the in-

verse problem in electrocardiography. This approach is based

on the factorization of boundary value problems method. In

this paper we derive the mathematical equations and test this

method on synthetical data generated on realistic heart and

torso geometries using the state-of-the-art bidomain model in

the heart coupled to the Laplace equation in the torso. We

measure the accuracy of the inverse solution using spatial Rel-

ative Error (RE) and Correlation Coefficient (CC).

Index Terms— Inverse problem, electrocardiography,

Riccati equations, factorization method, boundary value prob-

lems, electrocardiagraphic imaging (ECGI).

1. INTRODUCTION

ECGI is a new imaging technique that noninvasively images

cardiac electrical activity on the heart surface. In ECGI,

a multi-electrode vest records body-surface potential maps

(BSPMs). Then, using BSPMs, geometrical information

from CT-scans, a mathematical modelling and a numerical

algorithm, we reconstruct electrical potentials, electrograms

and activation maps on the heart surface [1, 2, 3]. In this

work we develop a new method called the factorization of

boundary value problems method [4, 5, 6] based on the in-

variant embedding approach. The electrical potential in the

ECGI inverse problem is governed by the Laplace equation

with a homogeneous Neumann boundary condition and an

extra Dirichlet boundary condition on the body surface. We

decompose this problem into two boundary value problems

and treat it as an optimal control problem. In [7], this optimal

control problem is solved using a minimization procedure of

a cost function, allowing to compute both electrical poten-

tial and its normal derivative over the heart surface. In our

approach, the two sub-problems are embedded into a family

of similar problems on subdomains bounded by a boundary

moving from the torso skin to the heart surface. We can
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define Neumman-Dirichlet and Dirichlet-Neumann operators

on this moving boundary that satisfy Riccati equations and

which need to be solved from the torso surface to the heart

surface. Then we can define a matrix system whose resolu-

tion is equivalent to minimise the cost function of the optimal

control problem. As this is an ill-posed Cauchy problem, a

regularization term must be applied on the matrix system to

get physiologically acceptable solution. In this paper, we first

introduce principles of the factorization by deriving equations

in the simpler 3D case of a cylinder. Then, we present equa-

tions derived in the most 3D generalized case. This is applied

to a human torso geometry case where numerical simulations

are performed by using synthetical data based on the ECG

solver [8]. We analyse the accuracy of the method by com-

paring reconstructed and synthetical solutions with RE and

CC computations and illustrations of reconstructed potential

fields.

2. METHODS

In this section we present the mathematical formulation of the

factorization method. For the sake of clarity we first derive

the equation in the 3D cylindrical case. Then, we present the

mathematical formulation of the factorization method in the

3D general case.

2.1. Initial problem

For a given BSPs data T , the electrical potential u in the torso

domain Ω satisfies the following system (P0) :















∆u = 0 in Ω , Ω : cylinder

u = 0 on Σ , Σ : lateral surface

u = T on ΓT , ΓT : torso surface

∇u · n = 0 on ΓT , n : outward normal to ΓT

(1)

The aim of solving the inverse problem is to find the trace of

u on the on the heart surface ΓH .



2.2. Optimal control problem

Following [7], we decompose (P0) into two auxiliary sub-

problems :















∆u1 = 0 in Ω
u1 = 0 on Σ
u1 = T on ΓT

∇u1 · n = η on ΓH

and















∆u2 = 0 in Ω
u2 = 0 on Σ
u2 = τ on ΓH

∇u2 · n = 0 on ΓT

(2)

We then define the cost function as follows :

E(η, τ) =

∫

Ω

(∇u1(η) −∇u2(τ))2 (3)

When E reaches zero, we have u1 = u2, and both of them

satisfy (P0). Our goal is then to minimise E. In the following

paragraph, we present the factorization approach allowing to

solve (P0). This problem is ill-posed [6], we then add a reg-

ularization term to avoid the ill-posedness. The cost function

becomes :

E(η, τ) =

∫

Ω

(∇u1(η)−∇u2(τ))2 + ǫ

∫

ΓH

(η2 + τ2) (4)

where ǫ is the regularization parameter.

2.3. Principle of invariant embbeding

The main idea of this approach is to ”transport” potential data

from torso surface to the heart surface as illustrated in Figure

1. For this, boundary value problems (2) are embedded into

a family of similar problems on subdomains Ωs. They are

bounded by a moving boundary Γs defined at x = s for x =
0 −→ x = a, where a is the length of the cylinder, x = 0
corresponding to the torso surface, x = a corresponding to

the heart surface and s is the variable that describes the axis

of evolution. At each position x = s, we impose a Neumann

boundary condition
∂u1

s

∂x |Γs

= α for the u1 problem and a

Dirichlet boundary condition (u2
s)|Γs

= β for the u2 problem















∆u1
s = 0 in Ωs

u1
s = 0 on Σs

u1
s = T on ΓT

∇u1
s · n = α on Γs

(5)















∆u2
s = 0 in Ωs

u2
s = 0 on Σs

u2
s = β on Γs

∇u2
s · n = 0 on ΓT .

(6)

At each position x = s, we define on Γs an affine mapping :

Neumann to Dirichlet α −→ u1
s : u1

s = Q(s)α+ w1(s) (7)

and a linear mapping :

Dirichlet to Neumann β −→
∂u2

s

∂x
:
∂u2

s

∂x
= P (s)β (8)

where w is the residual associated to the operator Q. Fol-

loowing [4], we substitute equations (7) in (5) and (8) in (6)
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Fig. 1. Illustration of the moving boundary for the cylinder

case.

to obtain the following system :















dP
dx

+ P 2 = −∆y, P (0) = 0

dQ
dx

−Q∆yQ = I, Q(0) = 0

dw1

dx
−Q∆yw = 0, w(0) = T

(9)

where I is the identity function, ∆y is the laplacian operator

defined on the section Γs. Operators P and Q satisfy Riccati

equations, whereas the residual term w satisfies an ordinary

differential equation depending on the operator Q. All the

initial conditions are known and are defined on the torso sur-

face.

According to [6], the energy function E(η, τ) could be

rewritten using P , Q and w as follows :

E(η, τ) = C + [η, τ ]A[η, τ ]T−2 < P (a)w(a), τ >

+ ǫ < τ, τ > +ǫ < η, η >
(10)

where :

A =

(

Q(a) + ǫI −Q(a)P (a)
−P (a)Q(a) P (a) + ǫI

)

(11)

and C =
∫

ΓT

T∂nw is a constant independent of τ and η.

We compute the gradient of E over τ and η and find that the

optimum of E is reached for τ and η satisfying :

(

(1 + ǫ)I −Q(a)P (a)
)

τ = w(a)
(

(1 + ǫ)I − P (a)Q(a)
)

η = P (a)w(a)
(12)

Since we are only interested in computing the electrical po-

tential on the heart surface we only solve the first equation of

(12) using the Matlab Cholesky solver.

2.4. Equations in the 3D generalized case

We name Γ0 the torso skin, Γ1 the heart skin and Ω the torso

domain. We recall T the electrical potential on the torso sur-

face. For 0 ≤ s ≤ 1, we define a familly surfaces Γs included

between the torso skin and the heart skin. This familly will

represent the moving boundary. We also introduceΦs′

s , which



is the application that maps the surface Γs to the surface Γs′ ,

and V (x) = d
ds
Φs

0(x) which could be seen as a ”velocity”

term. We decompose V into a normal term α~n and a tangen-

tial term VΓs
of the surface Γs.

Following the same derivation process from the equation (5)

to the equation (9), we can establish the variational formu-

lation of P and Q operators and the residuals term w. We

use the first order finite element method to discretize theses

equations on Γs. We denote (ej)
N
1 the finite element basis

allowing to approximate P , Q and w by Ph, Qh and wh. Fol-

lowing [9] we obtain :

d

ds
(MPh) + PT

h MαPh+BPh + (BPh)
T = Kα

Ph(0) = 0
(13)

M
dQh

ds
−

dM

ds
Qh +QT

hK
αQh −BTQh

− (BTQh)
T = Mα, Qh(0) = 0

(14)

M
dwh

ds
+QT

hK
αwh −BTwh = 0, wh(0) = T (15)

where M and Mα are mass matrices, Kα a stiffness and B

is the matrix defined by Bi,j =< VΓs
.∇ei, ej >. The size

of all the defined matrix is N × N where N is the number of

nodes on the heart surface. Then, we solve (13)-(15) using a

first order explicit Euler scheme to obtain Ph(1), Qh(1) and

wh(1). Finally we obtain the heart potential by solving the

linear system (12).

3. RESULTS

A computational geometry of a human torso volume was pro-

duced from a 43 years old women anatomical model. We used

the bidomain model to simulate one second of heart beat on

the heart and body surface. We extract the electrical poten-

tial on the torso boundary and use it as an input of the inverse

problem. At each time step the torso potential represents the

data T as in equation (15). Figure 2 shows a snapshot of

the torso potential (left) and the corresponding heart potential

(right).

In order to generate the sequence of surfaces morphing from

Fig. 2. Example of torso and heart potential field generated

by the bidomain model.

the torso surface to the heart surface, we solve the Laplace

equation with a Dirichlet boundary condition equal to 1 on

the torso surface and 0 on the heart surface as shown in Figure

3 (left). We then extract the surfaces as the iso-values of the

solution as shown in Figure 3 (right). These iso-surfaces are

Fig. 3. Illustration of the surfaces Γs generated. Left : iso-

values computed in the torso volume. Right : surfaces created

from iso-values.

used to compute the operators Ph(1), Qh(1) and wh(1) and

construct the electrical potential on the heart surface as ex-

plained in section 2.3 for various ǫ values (10−1, 10−2, 10−3

and 10−4). In Figure 4, we show a comparison between the

measured (left column) and the inverse solutions (right col-

umn) at times t = 100 ms (top) and t = 250 ms (bottom)

for ǫ = 10−4. We remark that time t = 100 ms, the inverse

solution is diffusive compared to the exact solution which has

a sharp wave front. Whereas at time t = 250 ms where the

exact solution is smoother and the reconstructed potential is

more accurate. In Figure 5 we show the time course of the

Fig. 4. Measured (left column) and reconstructed (right col-

umn) potential on the heart surface at t = 100 ms (top) and

250 ms (bottom).

relative error (RE) in space and in Figure 6 we show the time

course of the correlation coefficient (CC), for the different

values of the regularization parameter ǫ. Although the RE

is high, the average CC is close to 0.7 allowing to a relatively



accurate capture of the wave front. The high RE is due to

the fact that the magnitude of the reconstructed potential is

smaller than the exact solution.
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Fig. 5. Relative L2 error computed for several time steps.
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steps.

4. DISCUSSION

This work represents the first use of the factorization of

boundary value problems method in solving the inverse prob-

lem in electrocardiography. The method was firstly intro-

duced for general Laplace equation in 2D [6] and it was

technically challenging to implement this method in a 3D

framework and adapt it to the ECGI problem. The most

challenging parts are : 1) generating the family of moving

surfaces between the heart and the torso, 2) solving the non

linear Riccati equations on the moving surfaces. We used

an explicit Euler scheme to linearize and solve the Riccati

equations in order to build the operators P and Q at the heart

surface. This scheme allows to conserve the positivity and

the symmetry of the operator P , but does not necessarily

conserve the symmetry of the operator Q. More adapted

numerical schemes should be carried out in future works in

order to accurately solve the operator Q.

5. CONCLUSION

In this paper, we presented a new approach for solving the

inverse problem in electrocardiography called the factoriza-

tion of boundary value problems method. We derived equa-

tions of the method in a cylindrical 3D case to illustrate this

approach then in the general 3D case. We have tested this

method on synthetical data generated on a realistic human ge-

ometry. Since the CC is relatively high, the method could be

considered as a good candidate for applications like captur-

ing the wave front position on the heart surface. We think that

RE could be increased by improving the numerical discretiza-

tion of the equation solving the operator Q. We will also take

into account the time sequences by adding a temporal regu-

larization term into the cost function. This would be subject

of future works.
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