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ABSTRACT

We study the 3D neurite tracing problem in different imaging
modalities. We consider that the examined images do not
provide sufficient contrast between neurite and background,
and the signal-to-noise ratio varies spatially. We first split the
stack into box sub-volumes, and inside each box we evolve
simultaneously a number of different open-curve snakes. The
curves deform based on three criteria: local image statistics,
local shape smoothness, and a term that enforces pairwise
attraction between snakes, given their spatial proximity and
shapes. We validate our method using larva Drosophila
sensory neurons imaged with confocal laser scanning mi-
croscopy, as well as publicly available datasets.

Index Terms— neurite tracing, neuron morphology,
Drosophila, snakes

1. INTRODUCTION

Neuronal morphology is important for studying the structure
and function of neurons, as well as their connectivity. The
first steps towards encoding such information into a compact
numerical representation is locating the neuron in images,
identifying its parts (soma, axon, dendrites), and tracing axon
and dendrite branches (what we summarize with the term neu-
rite) [8]. The latter task has been a major challenge mainly
due to imaging device limitations, image noise, as well as
structural complexity and variability of the neurites.

There is a large number of neurite reconstruction ap-
proaches, many of which have been reviewed in [8] and [11].
They can be categorized into global, local, and combina-
tions of the two. Global methods usually extract skeletons of
neurites based on global intensity distribution of the images.
Such methods involve, in general, measuring vesselness, e.g.,
[5], binarization, and/or skeletonization, as in [12]. Local
methods extract the neurite centerline by starting from seeds,
which are located automatically or manually, and iteratively
perform tracing based on intensity statistics [10, 9, 11]. Al-
though most of these methods have been shown to perform
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Fig. 1: Our approach. A stack is divided into box sub-volumes (top
left). In each box, we evolve open-curve snakes based on local im-
age features, shape smoothness, and snake interactions, regulated by
proximity and shapes (top right): (s1, s2, s4) are close to each other
and have compatible shapes; (s3, s5) do not appear to belong to the
same branch, and therefore do not interact with (s1, s2, s4). Under
noise, we can successfully reconstruct neurites in 3D (bottom).

sufficiently on specific data, there is one common drawback
that limits their generalization: they usually perform poorly,
if the examined image stack depicts spatially varying signal-
to-noise ratios and contrast (due to, e.g., imaging modality
limitations, presence of surrounding structures, etc.). In this
work we aim at tackling this issue with a hybrid model-based
framework.

Specifically, we split the image stack into box sub-
volumes, where the neurite/background intensity can be suffi-
ciently classified. Within each sub-volume we start from ini-
tial seeds, detected by classification, and we evolve different
open-curve snakes based on three criteria: (i) local intensity,
(ii) individual curve shape smoothness, and (iii) interactions
between neighboring snakes, based on their proximity and
local shapes, including snakes in neighboring sub-volumes
(Fig. 1). We formulate the solution as a maximum a pos-
teriori probability estimation, where the objective is a joint
probability of the snake population configuration (positions
and shapes) and the labels of the voxels (neurite vs back-
ground). We validate our method using two different types of
data: sensory neurons from larva Drosophila, and different
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datasets from the DIADEM challenge1 [2]. Here we compare
our method with three of the DIADEM challenge finalists,
namely the neural circuit tracer [4], the principle curve tracing
[1], and the 3D snake model in [11].

2. METHOD

Let the data volume V ∈ R3, partitioned into non-overlapping
box sub-volumes. Also let V i and V j , i 6= j, denote two
adjacent boxes, considering locally 27-box neighborhoods.
Within each box, we detect seed points probabilistically, as
we describe below; these seeds are the initialization for a set
of snakes that we evolve locally.

Let Si be the set of snakes in sub-volume V i, Si =
{sn}Nn=1, and S =

⋃K
k=1 sk denote the set of all snakes in

the box-neighborhood (K ≥ N ). There can be attraction
between any two curves in Si

⋃
Sj , i 6= j, given (a) that

V i and V j are adjacent sub-volumes, (b) their close spatial
proximity and their compatible shape configurations (Fig. 1).

On the other hand, every voxel v ∈ V can be classified as
neurite or background, i.e., y(v) = {+1,−1}, where y is the
binary variable of the voxel label. Let Y i =

{
y(v)

}
v∈V i be

the set of voxel labels in sub-volume V i, and Y =
⋃27
i=1 Y

i

be all the labels in the box-neighborhood. Each Y i is cal-
culated independently from the neighboring sub-volumes, to
account for local feature variations.

Given the above notations, we formulate our objective lo-
cally as a joint optimization of the snake configuration and
voxel labels,

〈Ŝ, Ŷ〉 = arg max
〈S,Y〉

P (S,Y|X), (1)

where X =
⋃27
i=1X

i denotes the features calculated from the
data, and the objective joint conditional probability is,

P (S,Y|X) ∝ P (X|Y) · P (Y|S) · P (S)
∝ P (X) · P (Y|X) · P (Y|S) · P (S) (2)

The data prior P (X) is expressed locally as a Gaussian
distribution. Here, as data features we use indicatively the
Frangi filter responses [5], however, one may use other ves-
selness/tubularity features. Thus, we define,

P (xi(v)) =
1√
2πσ2

0

e−[x
i(v)]2/σ2

0 , (3)

where xi(v) is the Frangi filter response at the location v ∈
V i. Again, to calculate such features, we consider each sub-
volume independently, as separate data.

The factor P (Y|X) is essentially the data term that drives
the snake evolution in the vicinity. It is calculated indepen-
dently within each box sub-volume, as P (Y i|Xi), and there-
fore there is no probability smoothness imposed between
neighboring boxes, with respect to spatial distribution. The
reason for such choice is to consider each box as separate
data (stack), and calculate probabilities based only on local

1Datasets and metrics are available at: diademchallenge.org

Fig. 2: Illustration of how a single snake participates in the attrac-
tion energy. Top (from left to right): distance map dn, Dn in eq. (8),
and Fn in eq. (10). Bottom (from left to right): DnFn, Gn in eq.
(12), and DnFnGn. In eq. (13) we use (1−Dn)(1−Fn)(1−Gn)
for energy minimization.

intensity (Frangi response) statistics. To calculate such prob-
ability fields, we use a Discriminative Random Field (DRF)
[7], where we solve inference with the Highest Confidence
First algorithm [3], due to its approximation accuracy and
efficiency. In our implementation, we used the positively
classified voxels with high confidence as initial seeds that
determine the snake population.

The term P (Y|S) encodes the likelihood of voxels being
part of the neurite, given the configuration of the snakes. If
dk is the (unsigned) distance function for each snake sk ∈ S,

P (y(v)|sk) = e−dk(v), and (4)

P (y(v)|S) = max
{
P (y(v)|s1), . . . , P (y(v)|sK)

}
(5)

Finally, P (S) corresponds to the local smoothness of the
models and their pairwise attractions,

P (Si) = e−Es(S
i)−Ea(S

i), (6)
The smoothness energy for the population Si in V i is,

Es(S
i) =
N∑
n=1

{∫ 1

0

[
α(q)

∥∥∇sn∥∥2 + β(q)
∥∥∇2sn

∥∥2]dq}, (7)

with q encoding the normalized arc-length of each snake, and
(α, β) being the elasticity and rigidity weights; we consider
α = β = 1 for all snakes in the entire volume.

The effect of attraction energy Ea in eq. (6) is shown in
Fig. 1. Each point at a (normalized) location q along a snake,
contributes to an attraction field, i.e., an energy that drives the
extension of all snakes towards certain directions.

Let us consider a single model sn ∈ Si and how it affects
its surroundings. Using its distance function dn, we define,

Dn(v) = e−γdn(v), 0 ≤ γ ≤ 1, (8)
which implies that the further a location u from sn, the lower
the degree of influence at u from that model. We use γ to
control the slope of the exponential: higher γ values produce
narrower zones of influence around the curve (Fig. 2).

We also consider that only the end-parts of the snake can
create attraction; therefore, we define the functional that as-
signs weights to curve points as,

f(q) = e−δq + e−δ(1−q), q ∈ [0, 1], (9)



Fig. 3: Evolution instances of different snakes (in colors). From left
to right: iteration ]5, 10, 15, 20, 25, 30 and 40 (termination). The
images have been enhanced for illustration.

which imposes higher attraction by points at the two curve
ends, and practically no influence by intermediate points. We
calculate the map (Fig. 2),

Fn(v) =
{
f(q0)

∣∣∣ |v(q0)− v| = dn(v)
}
, (10)

where q0 is the location along the normalized arc length of the
curve, with cartesian coordinates v(q0), closest to the voxel v.

We also determine an angle of influence θ, with respect to
the direction of the curve’s first derivative. Every location v
can be affected by any point q on the snake based on,
gn(v, q) ={∣∣ cos (∠∇sn|q)− cos

(
∠∇sn|q + θ

)∣∣, θ ∈ [−ϑ,+ϑ]
0, otherwise

, (11)

where ∠∇sn|q is the tangential orientation at point q on the
curve, and θ is the angle between v(q)v and∇sn|q . In all our
experiments we considered ϑ = π/3. We define (Fig. 2),

Gn(v) =
∏

q∈[0,1]

gn(v, q), (12)

Using the definitions of eqs. (8), (10) and (12), since 0 ≤
Dn(u), Fn(v), Gn(v) ≤ 1, we formulate the attraction map
of snake sn,

An(u) = (1−Dn(u))(1− Fn(u))(1−Gn(u)) (13)
where low values indicate high influence. Therefore, for any
sn ∈ Si and sk ∈ S, sn 6= sk,

Ank(u) = max
{
An(u), An(u)

}
,∀u ∈

27⋃
i=1

V i (14)

which essentially encodes that two models can be attracted to
each other only when the highest value among the two attrac-
tion maps at location u is low enough. The attraction energy
of every curve sn in V i sources from all K snakes in the box-
neighborhood as,

ea(sn) =

∫ 1

0

[ K∑
k=1

Ank(u(q))
]
dq, sk 6= sn (15)

and for the population Si = {sn}Nn=1,

Ea(S
i) =

N∑
n=1

ea(sn) (16)

Notice that all snakes in the box sub-volume neighborhood
participate in this energy of the set Si, given their pairwise
proximity imposed by the terms D (eq. (8)) and F (eq. (10)).

(a)

(b)
Fig. 4: Tracing of two Drosophila sensory neurons. Top rows in
(a) and (b) (from left to right): collapsed stack image of the neuron,
magnified region where the results are shown, and ground-truth (in
cyan) from manual tracing. Bottom rows in (a) and (b), in cyan (left
to right): NCT [4], PCT [1], 3D snake [11], and our method.

Using the definitions in eqs. (7), (16), we calculate the
prior P (Si) in eq. (6). Then we solve the objective in eqs.
(1), (2) iteratively, in a narrow band around each open curve.
In eq. (2), the terms P (Y|X) and P (Y|S) are calculated
within each box sub-volume separately, while P (S) involves
shape and location information from snakes across all neigh-
boring sub-volumes. Fig. 3 illustrates in 2D the evolution
of nine snakes, corresponding to the initial seeds detected by
the DRF-based classification. For simplicity we consider two
adjacent box-volumes with virtually no background noise.

3. EXPERIMENTS
We applied our method in data from two different sources:
(a) 11 image stacks of sensory neurons in the wild-type larva
Drosophila, for the study of dendritic arborization patterns
over the four instars of development; (b) 13 stacks from three
datasets in the DIADEM challenge. In both cases, we made
comparisons with three DIADEM challenge finalists, namely
the neuron circuit tracer (NCT) [4], the principal curve tracing
(PCT) [1], and the 3D snake model in [11], using the metric
in [6]. Due to space limitation we cannot include here nu-
merical comparisons. However, we note that for all examined
volumes, our approach gives better, and sometimes equally
good, results with the considered competition.

3.1. Sensory neurons in the larva Drosophila
We prepared and imaged all the fruit fly samples. In our
tracing software we integrated the calculation of dendritic ar-
borization features, such as branching point locations, branch



available ground-truth NCT [4] PCT [1] 3D snake [11] 2.0our method

Fig. 5: Results (in color) on the DIADEM Olfactory Projection Fibers dataset. Rows correspond to different stacks (OP7, OP8, OP9). From
left to right: ground truth, the results of NCT [4], PCT [1], 3D snake [11], and our method. Different colors show parts of different neurons.

lengths, principal directions of branches, etc., along with
their coding as spatial distributions. We leave the dendritic
features and their analysis for future discussion.
Fly propagation. Adult flies (ppk-GAL4 mCD8::GFP) were
kept in vials and stored at room temperature. Vials contained
fly feed composed of cornstarch, agar, molasses, and yeast.
Genetic crosses. 3-4 males and females were placed in mat-
ing cages to facilitate larval collection. Cages were loaded
with grape agar plates containing two drops of live active
yeast on the center of the agar plate. Agar plates were
swapped at appropriate times to ensure correct age of lar-
val development (72 hours for 1st day 3rd instar). Larvae
were checked for typical morphological features to ensure
correct age. The cages and plates were incubated at 25oC.
Mounting. Larvae were mounted one per slide (75 × 25 ×
1mm) in Halocarbon 1000N oil to match the refractive in-
dex of microscope objective oil-immersion fluid. Coverslips
(22 × 22mm) were secured using putty in order to apply
appropriate pressure without popping the larva and to prevent
larva movement while imaging.
Anatomy. Larvae for all experiments were 48-72 hours old
(2nd-3rd instar). The neurons used in imaging were on the
distal left side along the larvae’s dorsal end, within hemiseg-
ments T2, T3, A1, and A2.
Microscopy. Image stacks (.5 micron sections) of Class V da
(dendritic arborization) sensory neurons were detected with
an inverse confocal laser scanning microscope (Zeiss LSM
780) using a Plan-Neofluar 40 × /1.30 Oil M27 objective
(Zeiss) and the ZEN 2010 software. The system utilized an
argon laser line (Ar-Laser Multiline 458/488/514 nm; Zeiss)
for GFP excitation (488nm) at 5% intensity, beam splitter
MBS 488, and a pinhole size of 1 airy unit.
Tracing. In Fig. 4 we illustrate indicative tracing results of
our approach, along with the three existing methods we used
for comparisons. The two cases shown in (a) and (b) are
typical examples of where our approach provides increased
robustness, in the presence of varying contrast and noise.

3.2. DIADEM challenge datasets
We used 6 stacks from the Olfactory Projection Fibers set, 5
stacks from the Neocortical Layer 1 Axons set, and 2 stacks
from the Cerebellar Climbing Fibers set [2], available online
at the challenge’s website.
Tracing. In these datasets it was not always obvious how
much better our approach performed compared to the other
three examined methods. In Fig. 5 we illustrate three cases
where our method and the competition performed overall
equally well. This is mainly due to the fact that in such data
there is very little background variation, and we do not fully
exploit our method’s focus on local ambiguities.

4. CONCLUSION

In this work we examined the problem of 3D neurite trac-
ing, under varying noise. Our work is based on open-curve
snakes, that evolve locally, driven by local data features,
shape smoothness, and pairwise attractions with nearby
snakes. The user can introduce different data features, and
can consider different resolutions of locality: we split the
volume into box sub-volumes within which we solve the
evolution of the snake population; different sizes of such sub-
volumes can be considered. We leave for future discussion
result comparisons when using different sub-volume sizes
and different data features. We compared our method with
existing approaches, using larval Drosophila sensory neurons
imaged with laser scanning confocal microscopy, and pub-
licly available datasets. From the examined data, it appears
that our method can be confidently used for different imaging
modalities, for quantifying dendritic features, necessary for
describing numerically neuronal morphology and its patterns.
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