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Abstract

Automated and accurate cell segmentation provides support for many quantitative analyses on 

digitized neuroendocrine tumor (NET) images. It is a challenging task due to complex variations 

of cell characteristics. In this paper, we incorporate unsupervised shape priors into an efficient 

repulsive deformable model for automated cell segmentation on NET images. Unlike other 

supervised learning based shape models, which usually require a large number of annotated data 

for training, the proposed algorithm is an unsupervised approach that applies group similarity to 

shape constraints to avoid any labor intensive annotation. The algorithm is extensively tested on 51 

NET images, and the comparative experiments with the state of the arts demonstrate the superior 

performance of this method using an unsupervised shape model.
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1. INTRODUCTION

Neuroendocrine tumor (NET) is one of the most frequent cancers worldwide. Computer-

aided image analysis, like Ki67 counting, of digitized specimens could potentially support 

improved characterization of NET. Efficient and accurate cell segmentation is a prerequisite 

for many computer-aided quantitative analyses such as morphological feature extraction or 

cell recognition, which is critical for Ki-67 counting. Many state-of-the-art approaches such 

as multiple level set [1], supervised learning [2], and semi-supervised classification [3] have 

been successfully applied to nuclei/cell segmentation on microscopic images.

Cells on NET images usually exhibit missing, weak, or misleading boundaries (see Figure 

1). Together with inhomogeneous intensity, these factors present significant challenges for 

many cell segmentation approaches. In order to address these limitations, a principle 

component analysis (PCA)-based shape prior has been presented in [4] to constrain the 

segmented contours with training data. Cai et al. [5] have applied shape constraints to a 

gradient vector flow model, while a shape prior-based level set method is reported in [6]. 

Recently, sparse representation [7, 8] has been proposed for shape prior modeling in 

biomedical image segmentation.
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However, the aforementioned shape prior models require a large set of annotated data for 

training, which are often unavailable or labor intensive. Meanwhile, we also need to make an 

assumption that existing training shapes are sufficient to model new shapes in the testing 

data, which might not hold in many situations. Recently, Zhou et al. [9] have used the group 

similarity of object shapes in multiple images to assist the cardiac segmentation for 

ultrasound images. Inspired by this idea, we introduce unsupervised shape priors into a local 

deformable model for NET cell segmentation. The proposed approach is significantly 

different from Zhou’s model [9] in several aspects. First, we do not need to assume the 

landmark correspondence among multiple shapes to be a priori, and instead they can be 

automatically and dynamically calculated during shape deformation; second, we exploit a 

sparse manifold learning method to build multiple subpopulation shape priors, which can 

deal with large shape variations on cells; finally, the proposed method can efficiently handle 

multiple touching or overlapping cells with shape preserving. The proposed cell 

segmentation algorithm can effectively handle weak or misleading cell boundaries, and 

provide significant support for subsequent cellular feature extraction and quantification in 

computer-aided diagnosis.

2. METHODS

In the proposed automated cell segmentation framework, we first employ a voting-based 

seed detection algorithm [10] to localize cell centers on each image and initialize contours 

(shapes) based on these detected centers, one per cell. Next, we calculate the landmark 

correspondence among different shapes and perform the proposed repulsive deformable 

model with locality and group similarity constraints.

2.1. Unsupervised Shape Prior Model

In this paper, cell shape is represented by the concatenated 2D coordinates of landmarks on 

the shape. Due to complex NET image nature, it is difficult to obtain accurate initial cell 

shapes for landmark correspondence establishing. Therefore, we propose to automatically 

and dynamically calculate the landmark correspondence during contour deformation. Since 

cells in NET images usually appear as approximate ellipses, we can compute the 

correspondences based on estimated major axes of cell shapes. Given the detected cell 

centers , a set of N circles with centers {(sxi, syi)} are generated and the 

initial landmarks are evenly sampled along the circles. During contour evolution, the 

landmarks can be detected by the rules: 1) The two endpoints of the major axis of the 

contour are selected as major landmarks. 2) All the other landmarks are evenly sampled 

from the contour.

For cell shapes with established landmark correspondence, we assume that there exists a 

certain affine transform between any two shapes considering the fact that cell shapes are 

approximately elliptical. In this case, the shape matrix, which corresponds to a set of cells on 

one image, is a low-rank matrix, whose rank measures the correlation among shapes. A 

lower rank indicates smaller variation on cell shapes. Therefore, we propose to use the rank 

of shape matrix to measure the group similarity, which captures the global changes 

(translation, rotation, and scaling) of cell shapes [9].
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Considering an image with N cells, we have N shapes 

 with each consisting of p landmarks. Shapes ci and 

cj follow  where  (or ) is the k-th landmark on ci (or 

cj), and  together with  denotes an 

affine transformation. Without losing generality, we assume that ci, i ≠ 1 is created from c1 

though affine transformation zi:

(1)

where x1 ∈ Rp×1 and y1 ∈ Rp×1 are the first and second half of c1. Therefore, we have 

. Since the column space of S ∈ R2p×6 has a 

dimensionality that is not larger than 6, the shape matrix X has low rank: rank(X) ≤ 6. The 

rank of X is then used to measure the degree of variations in cell shapes, and thus we can 

incorporate the low-rank constraint into shape deformation (discussed in Section 2.2) to 

truncate local variations but preserve global changes among different shapes. In this way, the 

model can effectively handle partially missing or misleading boundaries.

Due to shape variations of cells, it might be insufficient to learn a single shape prior model 

for all the shape instances. Therefore, we can build multiple subpopulation shape prior 

models based on clustered shapes. Furthermore, since the shape dimensionality is larger than 

the number of constraints of shape control, the shape vectors may lie on a low-dimensional 

manifold, where the similarly is measured by geodesic distance. Thus there exists a mapping 

Q transforming from the manifold to the original space

(2)

where vi ∈ Rm×1 represents ci in the embedding low-dimensional manifold and εi ∈ R2p×1 

denotes the noise. We use sparse manifold clustering and embedding (SMCE) [11] to obtain 

the low-dimensional embedding of the shape vectors. In cell segmentation, we have tested 

different dimensions (2, 3, 4, 5, and 6) as the dimensionality in the embedded low-

dimensional manifold, and the variation is less than 1% with respect to the performance. We 

therefore chose a two-dimensional embedded manifold. Specifically, we first align all the 

shapes into a specified shape and cluster these aligned shapes into several groups with 

SMCE, and thereafter perform shape deformation with corresponding shape constraints 

independently within each individual group.

2.2. Local Repulsive Deformable Model

In this paper, we incorporate an unsupervised shape prior constraint into a local deformation 

model for cell segmentation. We choose the well-known Chan-Vese model [12] as the 

energy functional due to its robustness to image noise. In addition, we introduce an edge 
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detector into the model to further assist with separating cells from the background. Formally, 

for image I with N cells, the Chan-Vese model with an unsupervised shape prior constraint 

can be described as follows

(3)

where Ωi and Ωb represent the regions inside ci and outside all the contours, respectively, hi 

(or hb) denotes the average intensity of Ωi (or Ωb), e(ci(s)) is the edge detector and chosen as 

−‖∇I(ci(s))‖2 (s ∈ [0, 1] is the parameter for contour representation), |ci| denotes the length of 

ci, and K is a predefined parameter controlling the rank of shape matrix X.

The model in (3) might not be able to separate touching/overlapping cells, and active 

contours may cross and merge one another during their evolution. To address this limitation, 

we introduce a repulsive term [10] into (3) to model the interaction between contours. 

Furthermore, because each cell is often surrounded by a limited number of adjacent cells, 

and only its neighboring cells make dominant repulsive contributions to its shape 

deformation during evolution. We thus can deform shape ci in its local coordinate system to 

improve computational efficiency, and it is implemented by simply using ci’s M nearest 

neighbors Ci:

(4)

where G(X) is equal to the objective function in (3). The repulsion in (4) reduces the 

computational complexity significantly from  to  due to M ≪ N, and 

optimizing (4) is faster than that using global repulsion without sacrificing segmentation 

accuracy.

2.3. Proximal Gradient

It is difficult to optimize (4) since rank is a discrete operator. Fortunately, we can achieve a 

relaxed form of (4) by replacing the rank operator with the nuclear norm ‖X‖∗ [13, 9]:

(5)

The energy function (first two terms) in (5) is differentiable with Lipschitz continuous 

gradient, so we exploit the proximal gradient method [14] to solve (5), which iteratively 
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updates current X based on its previous estimation and converges to a stationary point at a 

convergence rate of 

(6)

where  and μ is a consonant. The gradient is defined 

as  with fi(ci) corresponding to the ci’s energy 

function, and ∇fi(ci(s)) can be expressed as

(7)

where ni(s) and κ (ci(s)) are the normal unit vector and curvature of ci at landmark s, 

respectively, and uj(x) represents the indicator function: uj(x) = 1 if x ∈ Ωi, otherwise 0. 

Given the initial contours, we can iteratively evolve the contours toward desired cell 

boundaries using (6).

3. RESULTS AND DISCUSSION

The proposed method has been extensively tested using 51 NET images with 1784 cells, 

which are captured at 40× magnification. The ground truth of cell contours are manually 

annotated for quantitative comparison. Each cell contour is represented by 60 landmarks, 

and the number of shape clusters is 2. In the experiments, we evaluate the model 

performance with respect to different ratios of η and μ in (6). We empirically set λ1 = 1, λ2 

= 1, λ3 = 0.2, γ = 1, and ω = 1.2 in (7). Since one cell is usually surrounded by no more 

than 5 cells, we choose M = 5 in (7).

We first perform qualitative analysis to evaluate the proposed method. Figure 2 presents the 

segmentation results using the proposed method on two sample slide digitized images, and 

hundreds of cells are accurately segmented with shape preserving. Figure 3 gives the 

comparative segmentation results on two representative image patches including mean shift 

(MS), isoperimetric (ISO) [15], superpixel (SUP) [16], marker-based watershed (MWS), 

graph-cut and coloring (GCC) [17], repulsive level set (RLS) [10], and the proposed method. 

It is clear that MS, ISO, and SUP are general segmentation algorithms which require further 

processing to obtain fair results. GCC suffers from inhomogeneous intensity. MWS and RLS 

provide more accurate results; however, they do not take advantage of the cellular shape 

constraints. On the contrary, the proposed approach can handle weak or misleading cell 

boundaries because of the shape prior constraint, and therefore provides best performance.
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To quantitatively analyze the pixel-wise segmentation accuracy, we apply multiple metrics 

[9] including Dice similarity coefficient (DSC), Hausdorff distance (HD), and mean absolute 

distance (MAD), to the evaluation of the algorithm:

(8)

where Ωsr and Ωgt represent regions inside the automatic segmentation contour csr and the 

ground truth contour cgt, respectively. d(csr(s), cgt) denotes the minimum distance from point 

s at csr to the contour cgt, sup means the supremum, and |csr| represents the length of csr. 

Figure 4 displays the comparative performance between the proposed approach and the state 

of the arts. As one can tell, the proposed method provides the best accuracy, especially in 

terms of HD that calculates the largest error for each segmentation. This is attributed to the 

fact that compared with the other methods without shape constraints, the proposed approach 

can correct the corrupted cell boundaries and recover clean shapes. Meanwhile, the lower 

variations in the measurements indicate the stronger reliability of the proposed method.

The regularization parameter η in (6) plays an important role in segmentation. Table 1 shows 

the HD accuracy with respective to different η on 332 touching/overlapping cells, which 

usually exhibit weak or misleading boundaries. If η is too small (less than 5), the shape 

constraint is very weak such that some corrupted contours can not be recovered; however, if 

η is assigned a much higher value (larger than 20), it provides too strong penalty to the 

nuclear norm such that the final contours in each group will be more similar to each other. In 

the paper, η = 20 is chosen. It also demonstrates that contour evolution with shape prior is 

much better than the case without shape constraint (η = 0).

4. CONCLUSION

In this work, we incorporate an unsupervised shape prior constraint into a local repulsive 

active contour model. The landmark correspondence among different shapes is automatically 

determined during shape deformation and multiple subpopulation shape prior models based 

on sparse manifold learning are built to handle shape variations. The proposed algorithm 

does not require label intensive human annotations and meanwhile is effective and efficient 

for cell segmentation.
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Fig. 1. 
Several sample NET images. Many cells exhibit weak or misleading boundaries.
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Fig. 2. 
Segmentation results using the proposed algorithm on sample images (Cells touching image 

boundaries are ignored).
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Fig. 3. 
Comparative segmentation on two sample patches. From left to right: original images, MS, 

ISO [15], (SUP) [16], GCC [17], MWS, RLS [10], and the proposed method. MWS, RLS, 

and the proposed method use the same initialization.

Xing and Yang Page 10

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2016 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Box plot for quantitative comparison (DSC, HD, and MAD) between the proposed method 

(ours) and the other state of the arts.
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Table 1

Comparative pixel-wise segmentation accuracy

η Mean Median Standard Deviation 80%

0 6.16 5.06 4.34 9.79

1 6.04 4.85 4.33 9.63

5 5.64 4.34 4.25 9.24

10 5.32 3.88 4.08 9.03

20 4.97 3.74 3.69 8.10

60 5.40 4.51 3.01 7.39

100 6.60 6.09 2.92 8.28
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