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ABSTRACT
For computerized tomography (CT) imaging in (bio)medical
applications, radiation dose reduction is extremely important.
This can be achieved simply by reducing the number of pro-
jection images taken. In order to obtain accurate reconstruc-
tions from few projections, however, common reconstruction
techniques are not sufficient. Algebraic reconstruction meth-
ods (ARMs) are often more suited, but inflict a much higher
computational burden. In this work, a recently proposed
method is applied to biomedical µCT, in which the benefits
of ARMs are combined with the computational efficiency of
the common Filtered Backprojection (FBP) algorithm. Our
experimental results demonstrate that this approach yields
reconstructed images highly similar to those obtained by an
ARM, while maintaining the favorable computational effi-
ciency of FBP.

Index Terms— Tomography, Filtered Backprojection, al-
gebraic reconstruction methods, image reconstruction.

1. INTRODUCTION

Computerized tomographic (CT) imaging has many applica-
tions in clinical settings, in (bio)medical research, and in in-
dustry. In this paper, we focus on the biomedical imaging
task. For example, in osteoporosis research, reconstructions
from µCT scanners are commonly used to perform a longitu-
dinal analysis on the bone structures of small animals sub-
jected to some form of treatment [1]. Due to the harmful
nature of X-rays, radiation dose reduction is an important re-
search goal for the community. One common way of reducing
radiation is simply to take fewer projection images. This re-
quires reconstruction methods that can handle such datasets
well.

Two main types of reconstruction methods exist in the
literature. Analytical reconstruction methods are based on
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a discretization of an exact inversion formula for the recon-
struction problem. Well-known methods of this type are
Filtered Backprojection (FBP) and Feldkamp-David-Kress
(FDK). These methods perform a filtering step of the mea-
sured data in the Fourier space with a predefined filter. Many
standard filters are known from literature, such as the Ram-
Lak, Hann and Cosine filter [2]. The optimal filter depends
on the characteristics of the projection data, such as the signal
to noise ratio and the number of projection angles. The main
advantage of analytical methods is their high computational
efficiency, which is why they are offered in nearly all com-
mercial CT-scanner packages [3]. The downside of these
methods, however, is their inflexibility to special scanning
geometries and its inability to deal with insufficient data (e.g.
when only few projections images are available).

Algebraic reconstruction methods (ARM) are typically
much more robust with respect to incomplete or noisy pro-
jection data, due to their inherent ability to model the actual
projection geometry of the scanning device. ARMs, such
as SIRT, ART and CGLS [4], which compute a reconstruc-
tion by applying a sequence of update iterations, generally
converge to a solution that is optimally consistent with the
measured data, with respect to some norm. The drawback of
these methods is their heavy computational burden compared
to analytical methods. Moreover, the rapid improvement in
detector technology is leading to ever larger volume sizes
(i.e. higher resolution reconstructions) much faster than the
advances in computational hardware can keep up with. Ide-
ally therefore, one would like to combine the computational
requirements of analytical methods with the robustness of
algebraic methods. In [5], a method was described for de-
veloping filters for analytical methods that are based on the
convergence behavior of a linear ARM. The reconstructions
of FBP with these filters approximate the reconstructions of
the corresponding ARM.

Many other methods have been developed to create opti-
mal filters for FBP. Here, we mention only some recent work
in the field. In [6], Zeng derives a filter in the frequency do-
main based on the Landweber algorithm. Nielsen et al. derive
filters specifically for a tomosynthesis geometry [7]. Pelt and
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Fig. 1. FBP reconstructions of two µCT scans using (a) 360
projection angles; (b) 225 projection angles.

Batenburg use artificial neural networks to find good filters
based on prior knowledge for datasets with a small number
of projection angles [8]. They also provide a method to find
filters such that the projection error is minimal [9]. In [10],
Kunze et al. describe a method that also approximates an
ARM. Opposed to the method described in [5], Kunze et al.
need objects to obtain their filters.

In this paper, we will apply the method from [5] to two
sets of biomedical µCT data, that are acquired from a rat
femur and a mouse thorax respectively. We aim to show the
resemblance between SIRT and FBP that is obtained by using
the custom filters from [5]. Reconstructions of the scanned
objects using many projection angles are shown in Fig. 1,
where a display range was chosen to enhance visibility. The
same range is used for all reconstructions in this paper.

This paper is structured as follows. In Sec. (2), the method
from [5] is briefly described. Sec. (3) contains information on
acquiring the experimental data and the experiments that are
performed. The results are shown in Sec. (4). We discuss our
findings and conclude this paper in Sec. (5).

2. THE AF-FBP METHOD

This section contains a brief discussion of the Algebraic Filter
- Filtered Backprojection (AF-FBP) reconstruction method.
We first consider the Filtered Backprojection method and then
explain the reasoning behind creating filters based on a linear
ARM. For simplicity, we consider only a 2D parallel beam
setup, but the concepts can be extended to other geometries
as well.

FBP is a discretization of the inverse Radon transform,
where the projection data p is filtered by a filter g and then
backprojected. The filter g : R2 → R can be chosen freely,
depending on the experimental setup. The reconstruction for-
mula for FBP is given by Eq. (1).

f(x, y) =
∑
θ∈Θ

∑
τ∈T

pθτg(θ, τ − x cos θ − y sin θ), (1)

where f : R2 → R is the unknown image, Θ denotes the set
of projection angles, T denotes the set of detector bins and
p ∈ Rm with m = |Θ| · |T |.

The AF-FBP method generates angle-dependent filters g
based on the convergence of a linear ARM [5]. For this paper
we use the iterative method SIRT. Since SIRT is a linear, sta-
tionary Richardson solver, there exists a reconstruction matrix
R : Rm → Rn such that, for a fixed number of K iterations,
the reconstruction u ∈ Rn of SIRT is given by u = Rp. By
writing this equation element wise for a certain pixel c of u,
we obtain Eq. (2).

uc =
∑
θ∈Θ

∑
τ∈T

r
(c)
θτ pθτ , (2)

where r(c) denotes the cth row of R.
Let the coordinates of the center of pixel c be denoted

by (xc, yc) ∈ R × R, then t(θ)c = xc cos θ + yc sin θ is the
projection of pixel c on the detector at angle θ. For a variable
τ ∈ T − t

(θ)
c , where the minus sign denotes element wise

subtraction, we define a function h(c) : Rm → R by Eq. (3).

h(c)(θ, τ) = r
(c)

θ(τ+t
(θ)
c )

. (3)

Combining Eq. (2) and Eq. (3) yields the formula in Eq. (4).

uc =
∑
θ∈Θ

∑
τ∈T

pθτh
(c)(θ, t− xc cos θ − yc sin θ). (4)

Hence for the central pixel c, the role of function h(c) equals
that of the filter g in Eq. (1). It has been shown in [5] that,
for pixel c being the pixel at the center of the image grid, the
use of the function h(c) as a filter in the FBP method yields
a good approximation of the linear ARM. We refer to h(c) as
an algebraic filter.

Each coefficient of the algebraic filter can be obtained by
applying SIRT to projection data p that equals a unit vector
eθτ , with entry one on position θτ and zero otherwise. The
resulting image pixel uc will then equal r(c)

θτ ; see also Eq. (2).
After applying this step for all unit vectors eθτ with θ ∈ Θ
and τ ∈ T , the algebraic filter h(c) can now be deduced from
r(c) by using Eq. (3).

The algebraic filter h(c) can be applied to projection data
in the same way as standard filters that are often used for FBP.

3. EXPERIMENTS

In this section, we describe experiments that we performed
and define the measure that we use to examine the image qual-
ity of the reconstructions.

We consider the central slices of the two datasets depicted
in Fig. 1. As the method AF-FBP is deduced for a parallel
beam scanning geometry, the central slices were rebinned to
parallel beam projection data. The first dataset concerns an
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Fig. 2. Reconstructions of femur projection data with 60 pro-
jection angles and SIRT with K = 50 iterations.

ex-vivo scan of a rat femur, cross-sectioned at the epiphyseal
plate, an area of interest for femur research. In total, 376
projection images were taken with a resolution of 5µm in
a Bruker µCT SkyScan 1172 scanner running at 40kV. The
second dataset concerns an in-vivo scan of a mouse, cross-
sectioned at the thorax. Its 451 projections of resolution
34µm were taken in a Bruker µCT SkyScan 1076 system
running at 59kV. For both datasets, the SkyScan NRecon
software was used for data preprocessing and beam harden-
ing correction. To emulate low dose scans, we selected 45
and 60 projection angles from both scans.

In the experiments, we apply the SIRT-FBP method (FBP
with an algebraic filter based on SIRT) to the above men-
tioned datasets. The aim of SIRT-FBP is to approximate the
SIRT reconstruction. We will first consider the reconstruc-
tions of SIRT and FBP with a standard filter. They are shown
for the femur dataset in Fig. 2, where SIRT is performed
with K = 50 iterations and the Hann filter is chosen as the
standard filter for FBP. The reconstructions of SIRT and FBP-
Hann (FBP with a standard Hann filter) have characteristic
imaging features. The SIRT reconstruction is a smoothed im-
age, while the FBP-Hann reconstruction contains extensive
streaking artifacts. Furthermore, the heavy computational
burden of SIRT can be a reason to choose FBP, even when
a researcher would favor the reconstruction quality of SIRT
over FBP. In those situations, SIRT-FBP could be applied,
which yields an approximation of SIRT with comparable
computation time as FBP with standard filters.

In all experiments, the number of detector bins is D =
799. The reconstruction grid is a square, consisting of D×D
pixels of unit size. The number of iterations for SIRT is K =
50, unless stated differently. The forward projections that are
needed to execute SIRT are obtained using the Joseph kernel
[11]. For the calculations in this paper we use the ASTRA
toolbox [12].

3.1. Quality measure

The quality of the reconstructions is examined by comparing
the reconstructions with the SIRT reconstruction, since the
aim of SIRT-FBP is to approximate SIRT. The reconstructions
are compared on the reconstruction grid of D × D pixels.
Denote a reconstruction by u = (ukl) with 1 ≤ k, l ≤ D.
Furthermore, let the algebraic reconstruction be denoted by
uARM = (uARM

kl ). Then the mean ARM reconstruction error is
defined as

EARM
r =

∑
k,l

|ukl − uARM
kl |∑

k,l

uARM
kl

. (5)

Hence EARM
r is an L1-norm in the object space combined with

a scaling term. We assume that the set of projection data is
nonnegative and that uARM is nonzero.

4. RESULTS

In this section, we show the results of the experiments de-
scribed in Sec. (3). We emphasize that the purpose of AF-FBP
is to approximate the quality of the corresponding ARM re-
constructions, instead of improving the overall reconstruction
quality.

In Fig. 3 we show the reconstructions of the femur dataset
for SIRT, SIRT-FBP, FBP-RL (FBP with a standard Ram-Lak
filter) and FBP-Cos (FBP with a standard Cosine filter). The
number of projection angles is d = 60 and the number of
SIRT iterations is K = 50. For the reconstruction of FBP-
Hann (FBP with a standard Hann filter) we refer to Fig. 2.
Notice the resemblance between the SIRT and SIRT-FBP re-
construction, and the streak artifacts for FBP-RL and FBP-
Cos which are much more pronounced.

We use the mean ARM reconstruction error (see Sect. 3.1)
to compare the reconstructions. The results are shown in Ta-
ble 1. The EARM

r for SIRT-FBP is significantly smaller than
that of FBP with standard filters. This implies that SIRT-FBP
approximates the SIRT reconstruction, while FBP reconstruc-
tions with standard filters differ substantially from SIRT re-
constructions.

Class SIRT-FBP FBP-RL FBP-Hann FBP-Cos

45 projection angles

femur 0.18 1.6 1.3 1.4
thorax 0.13 0.50 0.43 0.46

60 projection angles

femur 0.17 1.3 1.1 1.2
thorax 0.12 0.42 0.36 0.38

Table 1. Mean ARM reconstruction errors EARM
r for K = 50.
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Fig. 3. Reconstructions of femur projection data with 60 pro-
jection angles and SIRT with K = 50 iterations.

We obtain similar results for a different number of itera-
tionsK in the range from 10 to 1000, although the differences
in EARM

r decrease for increasing K.

5. CONCLUSIONS AND DISCUSSION

We introduced the method AF-FBP, which uses custom filters
that are created based on a linear ARM. The reconstructions
of AF-FBP approximate the reconstructions of the ARM that
was used to create the filters. This was already shown in ear-
lier work for simulated data[5]. In this work, we have applied
this new method to experimental biomedical µCT data for the
first time. Our results demonstrate that reconstructions ap-
proximating the image quality of SIRT can now be created
with the computationally fast FBP method.

In this paper we have focused on the image quality of AF-
FBP compared to SIRT, because SIRT-FBP is designed to ap-
proximate SIRT. Whether it is advantageous to use SIRT (or
SIRT-FBP) instead of FBP with other filters depends on the
application and the features that are desirable for the partic-
ular imaging task. In future work, we will investigate how
other algebraic methods – that are capable of incorporating
prior knowledge or particular noise models – can be approxi-
mated following a similar approach.
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