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Abstract

Early detection and the assessment of changes in bone metastatic cancers can enable clinicians to 

monitor disease progression and modify treatment to help achieve improved results for patients. 

However, poor contrast makes detection difficult, and multiple disease sites make tracking of their 

changes over time difficult. We present a method for automatically detecting and tracking the 

longitudinal changes in multiple sclerotic bone metastases from Dual Energy Computed 

Tomography (DECT) images. We employ a multi-stage approach involving (i) bone and marrow 

extraction, (ii) slice-wise lesion candidate detection and volumetric segmentation, and (iii) 

aggregation of these 3D candidates. The algorithm achieved 78% agreement with radiologist 

identified lesions from 10 patients. Longitudinal consistency in the lesion detection computed over 

26 scans using Williams’ index was 1.02 ± 0.23 using DICE and 1.03±0.30 using Hausdorff 

metrics. We also present preliminary results for analyzing lesion material composition changes by 

using a novel representation computed from the DECT images, where clear differences between 

bone metastases and normal marrow can be seen.
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1. INTRODUCTION

Bone is the third largest site of metastases after lungs and liver. Early diagnosis of bone 

metastases and ensuing early treatment can significantly impact prognosis for the patients 

[1]. However, bone lesions are hard to detect due to poor contrast with surrounding 

parenchyma. Presence of large number and confounding appearance of bony anatomy makes 

it difficult for radiologists to quickly analyze and monitor disease changes. Therefore, 

automatic detection of the metastases and analysis of their changes over time can potentially 

benefit clinicians to help them effectively monitor and intervene to maximize the 

effectiveness of treatments [2, 3]. Majority of the work in bone metastases detection has 

been restricted to the vertebrae [4, 5, 6] from CT.
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In this paper we present a novel method to automatically detect and segment sclerotic bone 

metastases in the pelvis from Dual Energy CT (DECT) images. As opposed to regular CT, 

where targets are scanned at single energy, in DECT, targets are scanned at two different 

energies, thereby, producing a pair of images, typically a water and iodine density image, 

which are used throughout this work. The use of energy pairs provides a less ambiguous way 

of characterizing the material composition of the tissues.

Ours is a fully automatic method wherein all the lesions are detected with no user input, and 

minimal impact to clinical workflow. Our approach (Fig. 1) involves several steps, where 

first bone and marrow regions are extracted using [7], followed by contrast enhancement. 

Next, intensity clustering followed by shape filtering generates regions of interest (ROI) or 

lesion candidates. Each candidate generates a volumetric segmentation. These 3D 

segmentations are aggregated using transitive connectivity.

Our approach combines lesion detections from multiple scans and extracts their changes 

using volume and tissue composition changes. The tissue compositions are represented in 

ρefff/Zeff space computed from DECT images [8]. The ρefff/Zeff space spans the effective 

material density ρeff and effective atomic number Zeff of the underlying tissue.

2. METHODS

Lesion segmentation following bone and marrow extraction [7] consists of three steps:

2.1. Step 1: Tumor Enhancing Bi-Histogram Equalization (TEBEQ)

The tumors were enhanced using a bi-histogram equalization similar to [9] with the 

following differences in our method. Instead of using the mean intensity of the image, we 

used the intensity at the histogram peak (mode) to prevent over-smoothing of the intensities 

for images with large positive or negative skew in the intensity histogram. Next, our method 

automatically eliminates outliers by identifying the inflection points of the histogram to 

remove their influence on the equalization. The inflection points were identified by fitting 

splines to the intensity distribution on both ends of the histogram. In this work, the inflection 

points were characterized as the locations where the derivate of the fitted curve was high (∇ 
(f) > τ), where, τ = 1.

2.2. Step 2: Slice-wise Lesions Detection and Volumetric Candidate Generation

We made the following assumptions about the detected lesions: (i) lesions are sclerotic, 

meaning that the lesions will appear as hyperintense regions following tumor enhancement, 

(ii) lesions are small, solid and rounded structures. Therefore, the lesions were detected by 

first identifying the high-intensity super-pixels using meanshift clustering [10]. Then the 

selected superpixels were further analyzed using morphological criteria to extract the lesion 

candidates. Slice-wise detection of the lesion candidates was employed because the bone 

metastases are typically small lesions (≤ 5mL) and do not often extend across multiple 

slices. Furthermore, the slice thickness of the scans themselves were 5mm which would 

result in the blurring and loss of the small lesions when using mean-shift clustering.
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Four different morphological criteria were employed in order to extract small, rounded, and 

solid regions as opposed to elongated regions with large concavities. The criteria were: (i) 

eccentricity < ε, (ii) r1 = minorAxis/majorAxis > ρ1, (iii) solidity > σ, and (iv) skeleton/
perimeter < ρ2. Following the lesion candidate selection, seeds were extracted from inside 

the candidate regions by using skeletonization of the ROI, from which 3D segmentation was 

generated using geodesic active contours [11]. As lesion segmentations are generated from 

each slice-based candidates, multiple segmentations of the same lesions can result, which are 

aggregated as discussed in the next session.

2.3. Step 3: Candidate Volumes Aggregation Through Transitive Connectivity

Lesion volumes generated using the result from Step 2 were aggregated using transitive 

connectivity. Transitive connectivity between lesions was detected by computing the overlap 

between lesions such that two lesions that overlap either directly or through intermediate 

lesions were merged. The overlap between lesions was computed using the dice overlap 

metric such that lesions having DSC ≥ 0.2 were considered to be overlapping.

In order to compute the transitively connected groups of volumes, we built an undirected 

graph 𝒢(N, E), in which the nodes N corresponded to the different volumes and edges 

EN1, N2
 connected the nodes N1 and N2.

Graph 𝒢 can be expressed by an adjacency matrix A with elements aij = 1 if DSC (Ni, Nj) > 

τDS and aij = 0 otherwise. The transitivity constraint is enforced by computing the transitive 

closure of A, using the Floyd-Warshall algorithm [12]. The lesion aggregation step generates 

spatially distinct lesions.

2.4. Measuring Longitudinal Changes of Lesions

Longitudinal changes in the lesions were measured following lesion detection by first 

aligning the patient scans to the baseline scan using affine and deformable B-spline image 

registration using Mattes mutual information cost function, and next by finding 

corresponding lesions using Dice metric. For simplified analysis, we only considered the 

lesions that matched across all the time points.

The changes in the lesions were extracted as volumes and (ρeff/Zeff) changes. The ρeff, Zeff 

decomposition was computed using a least squares approach weighted by the DECT energy 

spectrums [13], in the projective space via a Radon transform of the water/iodine material 

images, followed by filtered backprojection reconstruction.

2.5. Measuring Longitudinal Segmentation Consistency

Accurate longitudinal analysis requires that the lesions be detected consistently across 

multiple time points. Hence, we measured the consistency of the detection using Williams’ 

index, which has previously been used in [14] to test the agreement on segmentation of 

individual structures generated from different methods. The Williams’ index estimates the 

common agreement between different segmentations. Consistent segmentations would result 

in a Williams’ index close to “1”. Williams’ index is computed as:

Fehr et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2019 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



WIt =
(r − 2)∑t′ = 1, t′ ≠ t

r s Lt, Lt′
2∑t′ = 1, t′ ≠ t

r ∑t″ = 1, t″ ≠ t
t′ − 1 s Lt′, Lt″

, (1)

where, r is the number of time points, Lt the set of labeled voxels at time t and s(Lt, Lt’) is 

the similarity measure between the labeled voxels at time point t and t’. At least three 

measurements are necessary to compute the Williams’ index. We employed the Hausdorff 

distance and the Dice score to determine the Williams’ index.

3. RESULTS

We analyzed a total of 36 different DECT volumes where the first 10 consisted of lesions 

validated by the radiologist. The remaining 26 consisted of scans from 6 patients who had 

multiple follow-up scans ranging from 2–5.

3.1. Tumor enhancement through TEBEQ

Fig. 2 shows two different examples of the lesion enhancement using the TEBEQ method. 

Also shown are the images before equalization for comparison. As seen, the tumors are 

clearly enhanced following the application of the TEBEQ method. Also shown are the 

radiologist identified lesions highlighted in yellow around the tumor for reference.

3.2. Volumetric Lesion Detection

An experienced radiologist (> 10 years) with several years of experience in analyzing DECT 

images identified a random set of 64 different lesions from 10 patients completely blinded to 

the algorithm detection. The lesions detected by the algorithm were compared to those found 

by the radiologist. Our method correctly matched 50 of the 64 identified lesions (78% hit 

rate). Although there were more lesions present and detected (1168) from the images, the 

radiologist only identified a subset of prominent lesions from a single slice from each patient 

(the algorithm generated a volumetric segmentation). A subset of the patient lesions were 

visually validated by the radiologist. Examples of algorithm and radiologist identified 

lesions are shown in Fig. 3. The top row shows the original images with lesions hand-labeled 

by the radiologist, while the bottom row shows the automated lesion segmentation.

3.3. Longitudinal Analysis of Lesions

Fig. 4 shows results of the changes in consecutively selected lesions from three different 

patients using the ρeff/Zeff composition space. For reference, the trajectories of normal 

marrow is also shown in black. As seen, whereas the trajectory of the lesions evolve quite 

dramatically clearly indicating a change in the tissue composition of the lesions, the normal 

marrow changes much less. The baseline value of the ρeff and Zeff is shown by a black cross 

for each lesion. Only 5 lesions are shown per patient for clarity. In the figure, patient 1 

shows a clear increasing trend, thereby signifying the buildup of denser tissue inside the 

lesion. On the other hand, in patient 3 the lesions are relatively unchanging, possibly 

signifying stable disease. Interestingly, patient 2 has lesions of both increasing and 

decreasing trends.
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Table 1 shows the mean changes in volume for all lesions ≤ 5mL as well as the ρeff and Zeff 

values for all the 6 patients for the first three time points following the baseline scan. 

Whereas for some patients changes in volume and composition agree, for others they do not 

follow the same trend. These results suggest that measures other than volume, such as 

material composition can add value in the longitudinal analysis and monitoring of bone 

metastases.

3.4. Williams’ Index Computation

The consistency of the detected lesions across the multiple time points was measured using 

Williams’ index. We analyzed the data of 6 patients for a total of 26 volumes. In all 96 
tumors were matched across all the time points and generated 461 Williams’ indices. The 

mean and standard deviation for the Williams’ index computed on the Hausdorff distance 

was 1.03 ± 0.30 and for the Dice metric 1.02 ± 0.23, which shows the consistency of our 

method.

4. DISCUSSION

Quality of treatment and management of patients with bone metastases can be improved by 

automatically assessing the changes in bone lesions and their density. However, using 

routine diagnostic CT images, it is difficult even for expert radiologists to quickly identify 

multiple metastatic lesions and quantify their changes over time. Automated tools such as 

presented in this work can assist and potentially simplify radiologist effort in quantifying 

changes in the bone and ultimately aid clinicians to provide timely and more effective 

treatments. The method presented in this work is fully automated requiring no user 

intervention. This is important because it is difficult for a radiologist to identify each and 

every lesion at one or multiple time points. Our method detects lesions independent of their 

size. Furthermore, we have developed methods to extract material composition measures 

that can capture the changes in the intrinsic properties of the bone lesions. Our approach 

combines a number of steps including bone and marrow extraction, contrast enhancement, 

lesion candidate detection, and segmentation. Appropriate identification of the method’s 

robustness would require one to assess the performance of each step. We have assessed the 

efficacy of bone and marrow extraction in our prior work [7]. Typical contrast enhancement 

methods to our knowledge only used qualitative evaluation. We assessed the performance of 

lesion detection itself by comparing with the radiologist detections. However, given the very 

large number of detected lesions, it was difficult for the radiologist to validate each 

candidate, especially in a longitudinal setting. We will address lesion candidate validation by 

providing an easy to use GUI that will facilitate for a radiologist to follow the evolution of 

candidate lesions and identify appropriate lesions. As an alternative to the multi-step based 

lesion detection, one can envision the use of machine learning to automatically detect the 

lesions. However, given the very small number of lesion examples provided by the 

radiologist and the fact that only lesions and no normal regions were identified, we believe a 

generalizable learning model is not feasible. Nevertheless, our method is promising, 

showing that metastatic lesions can be detected with fairly good consistency and the 

longitudinal evolution of the lesions can be characterized automatically.
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5. CONCLUSION

In this work we presented a method for fully automatic sclerotic bone metastases detection 

and longitudinal tracking of the lesion changes through volumetry and material composition 

computed from DECT images. Our method generates reasonably consistent lesion detection 

longitudinally and preliminary validation of the lesion detection showed reasonable 

agreement with radiologist detections.
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Fig. 1. 
Workflow of the metastases detection method.
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Fig. 2. 
Two examples of TEBEQ with lesion hand-labled by radiologist in yellow.
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Fig. 3. 
Top: examples of patient scans with label hand drawn by the radiologist overlaid in yellow. 

Bottom: results of our algorithm.
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Fig. 4. 
ρeff/Zeff space for 3 patients. The evolution of the lesions is given in color. For clarity 

purposes, the first 5 lesions for each patient are displayed. The evolution of a patch of 

healthy tissue is given in black as a comparison. The initial timepoint of the lesions is 

marked by a black cross. It is highlighted for one example of patient 2.
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