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Abstract

The goal of longitudinal shape analysis is to understand how anatomical shape changes over time, 

in response to biological processes, including growth, aging, or disease. In many imaging studies, 

it is also critical to understand how these shape changes are affected by other factors, such as sex, 

disease diagnosis, IQ, etc. Current approaches to longitudinal shape analysis have focused on 

modeling age-related shape changes, but have not included the ability to handle covariates. In this 

paper, we present a novel Bayesian mixed-effects shape model that incorporates simultaneous 

relationships between longitudinal shape data and multiple predictors or covariates to the model. 

Moreover, we place an Automatic Relevance Determination (ARD) prior on the parameters, that 

lets us automatically select which covariates are most relevant to the model based on observed 

data. We evaluate our proposed model and inference procedure on a longitudinal study of 

Huntington's disease from PREDICT-HD. We first show the utility of the ARD prior for model 

selection in a univariate modeling of striatal volume, and next we apply the full high-dimensional 

longitudinal shape model to putamen shapes.
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1. Introduction

Longitudinal imaging studies involve tracking subjects by repeated image acquisition over 

time. A primary goal of longitudinal neuroimaging studies is to find sensitive biomarkers 

that correlate with disease outcomes. In neurodegenerative diseases, such as Alzheimer's and 

Huntington's disease, the shape of the brain is affected. Longitudinal statistical shape 

analysis involves understanding and quantifying anatomical shape variability within and 

across subjects, its correlation to predictors such as age, clinical scores related to disease, 

and also to distinguish between normal and disease populations.

Previous work on longitudinal shape modeling includes the use of diffeomorphic mappings 

by Qiu et al. [1] to track changes in a subject and map the individual trends to a population 

atlas via parallel transport. Durrleman et al. [2] construct spatiotemporal image atlases from 
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longitudinal data. Barry et al. [3] build mixed-effects models on a small number of manually 

selected landmarks to model the development of facial shape. Datar et al. [4] build linear 

mixed-effects models treating shape as a collection of point distribution models in 

correspondence across subjects. Muralidharan and Fletcher [5] develop a manifold version 

of a mixed-effects model to analyze longitudinal data taking values on a finite-dimensional 

Riemannian manifold. Singh et al. [6] develop hierarchical geodesic models in the infinite-

dimensional space of diffeomorphisms to study longitudinal imaging data.

All of the above approaches are limited to modeling longitudinal shape as a function of time 

as the only predictor. However, we usually have a lot more information about subjects in a 

longitudinal imaging study, such as sex, IQ, diagnosis groups, clinical scores associated to 

disease, etc. Developing statistical shape models that can handle such covariates is critical 

for two reasons. First, statistical analysis can often be improved by controlling for nuisance 

variables, i.e., variables that are not of primary interest but have a significant effect on the 

model. Second, including categorical variables, such as sex or diagnosis, can help explain 

how longitudinal shape trends are different in different populations. However, there are also 

dangers to including covariates in a statistical model. One such danger is that different 

combinations of covariates can lead to drastic changes in the statistical significance of the 

variables of interest. This opens the risk of “p-value fishing”, where several covariate 

combinations are attempted in search of the desired result. Another danger of including 

covariates is that each new covariate adds a number of parameters proportional to the 

dimension of the response variable (which is very large in the case of shape responses).

To this end, we present a novel Bayesian mixed-effects model for longitudinal shape data 

that incorporates relationships between shape change and multiple predictors 

simultaneously. Our first principle is that the model should automatically choose the 

appropriate covariates to include in a data-driven fashion, avoiding the need for ad hoc 

choices from the user. The second principle is Occam's razor, that the model should be no 

more complex than is needed to explain the data. To this end, our model uses an automatic 

relevance determination (ARD) prior on all fixed-effects covariates, which drives the 

irrelevant coefficients to zero that do not have a significant contribution to the model given 

the data.

2. The Model

2.1. Background on Mixed-Effects Models

In a linear mixed-effects (LME) model [7], the response or observed variable yi is assumed 

to have a set of p parameters α, fixed across n subjects, representative of population 

parameters, called “fixed-effects”. In addition, the ith subject is assigned a vector of q 
subject-specific parameters, βi, called random-effects that model the deviation of the subject 

from the population. For i ∈ {1, 2, …, n}, the LME model is

(1)
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where for the ith individual, Xi and Zi are known design matrices with covariate information 

that influence yi through fixed and random effects respectively, βi ∼ N(0, D), with arbitrary 

covariance matrix D, and εi ∼ N(0, τ−1Ii), for some precision τ and Ii identity matrix.

2.2. Univariate LME with automatic covariate selection

For a univariate longitudinal response variable y with fixed-effects α and random-effects β, 

Armagan et al. [8] propose the following Bayesian model:

Likelihood

(2)

where N denotes the total number of observations (all time-points of all subjects).

Prior on α—To select covariates that are most relevant to the model, we place an automatic 

relevance determination (ARD) prior on α [9]: α ∼ N(0, Ω−1), where Ω = diag(ωk), k = 1, 

…, p is a diagonal matrix of Gaussian precision parameters, i.e.,

(3)

Posterior for α

(4)

where

Inference—In the general case, τ and D are unknown parameters, and [7] develop an 

expectation maximization (EM) algorithm to compute restricted maximum likelihood 

(REML) estimates of all model parameters including α and βi, i = 1, …, n in an iterative 

manner. In contrast with [7], α here is a random variable with the chosen ARD prior with 

precision parameters ωk, k = 1, …, p. From (4), see that the posterior distribution of α is 

Gaussian. For Bayesian inference, we take a similar EM approach as in [7], but with the 

added estimation of ω's and computing the MAP estimate of α in every EM iteration instead 

of the REML estimate. On convergence of the EM algorithm, a high ω estimate implies that 

the posterior distribution of the associated covariate will peak about 0, and hence be deemed 
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irrelevant to the model, whereas a low ω value keeps the associated covariate in the model. 

See [8] for a treatment of univariate Bayesian mixed-effects models that also includes prior 

choices for random effects.

2.3. Shape LME with automatic covariate selection

We now propose a novel Bayesian mixed-effects model to study longitudinal shape 

evolution that automatically selects relevant covariates associated to shape change. As in [4], 

shapes are represented as point distributions in correspondence across subjects and time-

points. The joint shape likelihood can be written as

(5)

where y is a shape response variable with m independent coordinates, and α, β are now fixed 

and random effects “shape” parameters. In the particle representation of shapes, note that 

each co-ordinate of each particle being univariate longitudinal, follow their own independent 

1D LME model with unknown parameters τl, Dl. We place an ARD prior on fixed effects α, 

given as

(6)

where Ω is a diagonal covariance matrix. Note that we choose Ω to be shared across all 

coordinates of all particles representing the shape. We could instead model separate 

covariances for each coordinate. However, a shared Ω allows us to select relevant covariates 

which influence the shape as a whole. For example, we can ask if sex is a relevant predictor 

for global shape.

Inference—Unlike the univariate case, the posterior distribution of α isn't Gaussian but 

rather an m-product of Gaussians. For inference, we follow a similar EM procedure to that 

in Section 2.2, with the difference being that Ω estimation depends on the entire shape 

corpus, i.e., the current MAP estimate of fixed-effects α and estimates of all τl, l = 1,…, m. 

The estimate for ωk, k = 1,…, p, denoted  maximizes p(y|Ω, β, τ), and we derive this as 

closed form solution.
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(7)

where , Ekk is a p × p that is 1 at the kth diagonal position and zero 

everywhere else.

3. Experiments

Data

We study subcortical change associated with Huntingtons disease (HD), leveraging the 

longitudinal study PREDICT-HD. The longitudinal database consists of 209 female subjects 

(66 CTRL, 36 LOW, 41 MED, 66 HIGH) and 112 male subjects (42 CTRL, 13 LOW, 14 

MED, 43 HIGH). The LOW / MED / HIGH categories represent probability of onset of 

manifesting signs of HD. All subjects have had at least 2 MR images acquired 

approximately one year apart, with many subjects undergoing multiple scans per visit. Six 

subcortical pairs (caudate, putamen, hippocampus, thalamus, acumben, and pallidus) were 

segmented from each MR image. For our experiments in this paper, we restrict our attention 

to the striatal complex (left/right caudate and putamen).

Preprocessing

The neurodegeneration process associated with HD has been observed as a temporally 

smooth process [10]. An emerging model of smooth anatomical change is to consider 

continuous transformations of the ambient space by differentiable and invertible 

deformations. To remove extraneous variability from raw imaging data, we estimate 

continuous and temporally consistent sequence of shapes as prescribed by the first stage of 

consistent longitudinal segmentation in [11]. We then extract longitudinal shape 

correspondences from these smooth meshes computed at observed time-points. These shape 

correspondences feed into our Bayesian covariate mixed-effects shape model. We also 

compute structural volumes of these temporally consistent shapes as a derived measure and 

use this as our 1D longitudinal data for covariate statistical analysis. Note that the statistical 

shape model we propose is independent of the way we obtain shape correspondences. The 

model is applicable to a different set of valid and consistent shape correspondences.

Model

The full model with all covariates of interest for longitudinal shape and volume is

(8)
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The model accounts for 10 covariates in all since we have 2 sexes (male / female), and 4 

groups (CTRL, LOW, MED, HIGH) along with corresponding interaction terms. Our 

Bayesian inference procedure will select the most “relevant” covariates to the model.

Statistical analysis of Striatal volume

We first evaluate our proposed method to study longitudinal striatal volume change using the 

model in (8). Our inference procedure selects some of these covariates as most relevant, 

namely, the intercept, age, sex, age × LOW, age × MED and age × HIGH. Figure 1 shows 

the estimated covariate model for both males and females. For both sexes, note that the 

slopes of the risk group lines become more negative as we go from CTRL to LOW to MED 

to HIGH. Also, see that slopes estimated for males and that for females are the same, since 

the interaction term of age × sex was deselected from the model.

To check if “relevant” covariates we inferred make sense, we also computed Akaike 

information criterion (AIC) values of all possible 210 models for this data (since there are 10 

covariates). Our model was one of 4 models with the lowest AIC. In Table 1, we report 

significance values for different covariates. See that each of interaction terms age × group 

are significant to the model but age × sex isn't.

Statistical analysis of Longitudinal shape

We next evaluate our method on longitudinal right putamen. The intercept, age, sex, age × 

group, and the intercept interaction with MED and HIGH were the selected covariates based 

on our estimation. The covariates LOW, age × sex were deselected. The color map (from 

blue to red) is generated as the dot product of the age parameter with surface normals 

depicting local volume change. (See Figure 2). The irrelevance of age × sex is corroborated 

by a near identical colormap in both sexes. Also, see that there is a gradual increase in shape 

change as we go from CTRL to LOW to MED to HIGH. We highlight that the HIGH 

category displayed the most amount of twisting and bending when the shape sequence was 

seen as a 3D evolution. As an additional proof-of-concept experiment, we included a random 

white noise covariate to the shape model and inferred that this covariate was irrelevant.

4. Conclusion

We presented a novel Bayesian method to automatically select relevant covariates that 

influence global shape change. We evaluated our methods on both longitudinal shape and 

volume from the PREDICT-HD database. Our shape model assumes independence between 

random effects of particle coordinates, but can be extended to include spatial correlations. It 

remains an open question how one can compute Bayesian credible regions and predictive 

distributions for shape evolutions.
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Fig. 1. Bayesian LME covariate analysis on Female (top) and Male (bottom) striatal volumes
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Fig. 2. 
Longitudinal shape analysis: Right putamen. Colormap: Local contraction (blue) to 

expansion (red) in mm

Muralidharan et al. Page 9

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Muralidharan et al. Page 10

Table 1
Fixed-effects covariates significance values estimated from LME analysis of longitudinal 
striatal volumes

Parameter p-value Parameter p-value

age 0.0088 age × LOW < 0.001

sex 0.0223 age × MED < 0.001

age × sex 0.9198 age × HIGH < 0.001
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