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Abstract

Advances in neuromedicine have emerged from endeavors to elucidate the distinct genetic factors 

that influence the changes in brain structure that underlie various neurological conditions. We 

present a framework for examining the extent to which genetic factors impact imaging phenotypes 

described by voxel-wise measurements organized into collections of functionally relevant regions 

of interest (ROIs) that span the entire brain. Statistically, the integration of neuroimaging and 

genetic data is challenging. Because genetic variants are expected to impact different regions of 

the brain, an appropriate method of inference must simultaneously account for spatial dependence 

and model uncertainty. Our proposed framework combines feature extraction using generalized 

principal component analysis to account for inherent short- and long-range structural dependencies 

with Bayesian model averaging to effectuate variable selection in the presence of multiple genetic 

variants. The methods are demonstrated on a cocaine dependence study to identify ROIs 

associated with genetic factors that impact diffusion parameters.

Index Terms

Bayesian model averaging; diffusion tensor imaging; generalized principal component analysis; 
imaging-genetics

1. INTRODUCTION

Chronic cocaine consumption leads to psychological and physical problems. Several studies 

have suggested that genetics contribute to addiction. More specifically, it has been asserted 

that certain DNA polymorphisms may enhance vulnerability to drug abuse and may be 

associated with an individual’s response to treatment [1]. By facilitating the interrogation of 

neuropathological markers of cognitive disorders, non-invasive imaging technologies such as 

functional magnetic resonance imaging (fMRI) and diffusion tensor imaging have provided 

new insights into the underlying mechanism of addiction. In particular, chronic cocaine 

users have been shown to exhibit subtle abnormalities in particular brain regions. Current 

multidisciplinary efforts endeavor to elucidate the precise environmental, genetic, and 
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psychological mechanisms underlying the alteration of brain imaging parameters in chronic 

cocaine users [2, 3].

Developing analytic approaches for integrating imaging and genetic data is challenging 

because the statistical and computational frameworks must account for (i) high-

dimensionality of the imaging and/or genetic data; (ii) existence of complex correlation 

structures such as short- and long-range dependence (e.g., spatial/serial correlation) among 

the imaging features; and (iii) spatial heterogeneity in variable selection in the presence of a 

large set of genetic variants that might impact different parts of the brain.

To overcome these limitations to statistical inference, we introduce a hierarchical statistical 

framework called integrative Bayesian analysis of neuroimaging-genetic data through 

hierarchical dimensional reduction (iBANG-HD). Briefly, we leverage both biological 

knowledge (in defining regions of interest, ROIs) and principled dimension reduction 

techniques (e.g., generalized principal component analyses) hierarchically, as suitable 

projections for the high-dimensional imaging features. Subsequently, we account for model 

(genetic) uncertainty by using Bayesian model averaging (BMA) procedures in the reduced 

space. This results in a fast, scalable method that can accommodate up to hundreds of 

thousands of voxellevel observables while facilitating coherent probabilistic inference to 

account for the multiple sources of inherent variation.

Our methods are motivated by a recent cocaine addiction study that used DTI to identify 

brain regions that emit strong evidence of differential diffusion patterns, demonstrated by 

fractional anisotropy (FA) values, among candidate genetic variants, cocaine users, and 

demographic features. The results suggested that chronic cocaine users exhibit subtle 

abnormalities in the anterior and posterior corpus callosum and in tracts in the frontal and 

parietal regions of the brain. Our results suggested that cocaine consumption is associated 

with diminished FA in most brain regions. Additionally, gene polymorphisms associated 

with GABAergic neurotransmitters and receptors exhibited evidence of association with FA. 

This finding has potential implications in the development and progression of addiction.

2. HIERARCHICAL STATISTICAL FRAMEWORK

In this section, we introduce the hierarchical statistical framework for iBANG-HD, which 

proceeds via the following steps.

2.1. Model formulation

Suppose the entire brain region can be mapped to r = 1,…, R ROIs defined using an 

appropriate brain atlas. In each ROI, the (nested) imaging features (e.g., FA values) at the 

voxel ν(r) = 1,…, V(r) for subject i = 1,…, n are represented by  (ν), and the 

corresponding (m-dimensional) genetic and demographic variables are represented by {xi1,

…, xim}. Assume Y (r) (ν) is a column-wise matrix of imaging features 

, X is an n × m matrix, and β(r)(ν) is the full m-dimensional vector of 

the regression coefficients. A linear regression model for the νth voxel in the rth ROI can be 

expressed as
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(1)

where α(r) is an intercept, σ(r) ε ℝ+ is a scale parameter, and ε (r) is random noise 

(accounting for unknown sources of variation), which follows an n-dimensional normal 

distribution with zero mean and the identity covariance matrix.

Our primary construct for inference is the effect surfaces β(r)(ν) across the ROIs, which 

capture the associations between the imaging features and each of the m genetic covariates 

across the brain. However, this requires estimation of V(r) × m number of parameters over all 

ROIs, which in our case is (14 × 104) × 24 ≈ 33 × 104 parameters, and presents considerable 

analytical and computational challenges. To circumvent this, we decouple the model fitting 

and inference using a three-step component-wise analysis pipeline:

• Step I: Apply hierarchical dimension reduction to each ROI via 

generalized principal component analysis that accounts for both short- and 

long-range spatial dependencies (Section 2.2).

• Step II: Estimate the association between genetic and demographic 

variables via Bayesian model averaging on the reduced dimensional space 

of each ROI (Section 2.3).

• Step III: Use reverse projections to obtain posterior inferences across the 

entire brain region (Section 2.4).

2.2. Generalized principal component analysis

For notational simplicity, we drop the superscript r from the ensuing discussions, noting that 

model fitting is performed for each ROI independently and in parallel. Using a model based 

on principal component analysis (PCA), we project the imaging features, Y (ν), as Y (ν) = 

M+UDVT +E, where M denotes the mean matrix, D is the singular values, U and V are the 

left and right (eigen-) factors, respectively, and E is the error matrix. Assuming Z(ν) denotes 

the centered data, Z(ν) = Y(ν) − M. The matrix errors can be written as vec(E) ∼ (0, P−1 ⊗ 
Q−1).

If we assume the error matrix values are independent and identical i.e., P = I and Q = I, the 

above model reduces to the standard PCA model with independent errors. While this 

accounts for long-range dependencies, it does not account for short-range “local” spatial 

dependencies. This limitation can be addressed by considering unequal weighting of matrix 

errors (E) according to the data structure, using a recently introduced generalized PCA 

(GPCA) model [4]. This assumes the noise covariance is smooth with respect to the 

structured imaging data, as in fMRI and DTI data [5], through suitable specification of the 

smoothing operators: P,Q. In our context, they are defined as follows: for Pν×ν, we consider 

a Laplacian graphical operator to account for the spatial structure of the data based on the 

Euclidean distance for each ROI [6]. This accounts for the local spatial architecture by 

allowing nearby voxels to have similar loadings. Assume G is a graph that denotes the grid 

structures based on the Euclidean distance between the voxels in each ROI. We define Pν×ν 
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based on the Laplacian matrix as Pν×ν ≡ L(G) = {D(G) − A(G)}, where A(G) is the 

adjacency matrix, and D(G) represents the diagonal matrix of the vertex degree, suitably 

defined. Qn×n is defined as the identity matrix since the patients are considered to be 

independent.

The loss function of the transportable quadratic norm under unequal weighting of the matrix 

error terms can be expressed as

(2)

where ui is the ith column of U, and vj is the jth column of V. This can be expressed as a 

generalized least-square matrix decomposition (GMD) optimization problem to find the best 

rank-K approximation of the data with respect to Q, P –norm by minimizeU,D,V 

, subject to UTQU = I(k), VTRV = I(k), and diag(D) ≥ 0, where Q, P are 

the left and right quadratic operators, respectively. We use the proposed GMD algorithm, 

which is feasible for the massive data sets commonly encountered in neuroimaging [4].

In essence, the above GPCA model defines a projection of the original ν−dimensional image 

matrix Y (ν) to a lower K-orthogonal dimensional Z(K) matrix, using the following 

(conformable) projection matrix . These 

projections have two important properties: they not only take into account the spatial 

structure, but also are (nearly) loss-less transformations since they capture most of the 

modes of variation in the data. More importantly, these projects serve as substantial 

dimension reduction devices. For example, for the middle cerebellar peduncle ROI with 

5280 voxels, using GPCA, we can explain 95% of the variation in this ROI using only K = 

50 principal components. Overall, the average number of voxels in each ROI is around 

2882.10 and the mean number of principal components needed to explain 95% of the 

variability is around 42.22, which indicates that the GPCA is capable of almost 68.25-fold 

dimension reduction.

2.3. Bayesian model averaging

The lower dimensional orthogonal projections Z(K) for each ROI serve as responses to 

construct the effect surfaces β(r)(ν) that capture the associations between the imaging 

features and each of the m genetic covariates across the brain. However, this necessitates 

estimation of K × m number of parameters, which in our case for a given ROI (e.g., the 

middle cerebellar peduncle ROI) is 50 × 24 ≈ 1200 parameters without accounting for 

model uncertainty. In other words, we do not expect the same set of genetic covariates to 

have the same impact across all brain regions; hence, the need to incorporate covariate 

(model) selection into our modeling strategy. However, the number of models increases 

exponentially to 50 × 224 when accounting for model uncertainty over all possible 

configurations of models, which represents substantial analytical and computational 
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challenges. To overcome this challenge, we utilize BMA procedures, which account for 

model uncertainty by shrinking the influence of insignificant covariates (to zero) through 

appropriate model weights, and provides a unified method of inference for all voxels [7], as 

detailed below.

Let  define the model space. Suppose that each ROI can be mapped 

to K components. For Z(r)(K) obtained from GPCA, a specific model Mj has a subset of Xj 

clinical, demographic and genetic variables, leading to the following equation:

(3)

where the superscript * is used to define the parameters in the reduced space, and 

 (0 ≤ mj ≤ m) is the reduced subset of covariates with the elimination of 

. Priors: Priors are defined for (i) model space  and (ii) corresponding 

parameters , α* and σ*. On the model space, to elucidate no a priori model preference 

in the absence of prior knowledge, we select a uniform distribution. For the regression 

parameters, we assume improper non-informative priors for α* and σ* such that p(α*, σ*) 

∝ σ−1 to achieve maximal learning from the data. The residual error variance, σ*, explains 

unknown sources of variability. Also, we assume a g-prior structure for  whereby 

 is modeled as an mj-dimensional normal distribution with mean zero 

and covariance matrix of , where g = 1/max {n, m2}, which guarantees 

asymptotic consistency for selecting the correct model [8].

Posterior computations: The posterior distribution of  can be derived as

(4)

where the posterior model-specific probability  is calculated as

(5)

and the marginal likelihood of model Mj which we denote by ℒ(K)(Mj), is

(6)
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where  which represents the sampling model, (3), p(α*, σ*) and 

 are the prior distributions for the intercept, scale, and regression 

coefficients, respectively. We use Markov chain Monte Carlo (MCMC)-based methods to 

estimate all model parameters and posterior probabilities, specifically the Metropolis-based 

sampling schemes described in [9].

2.4. Posterior inference via reverse projections

The hierarchical implementation of GPCA and BMA provides the posterior means and 

standard deviations of the effect surfaces for each genetic covariate-ROI combination in the 

reduced space. For coherent biological and scientific interpretations, we need inferences at 

the original voxel/brain level, however. In our framework, this can be achieved by using 

reverse projections that map the estimates in the reduced (Z) space back to the data (Y) space 

as follows. The coefficient surfaces, β*(r)(ν), in the reduced space for the rth ROI can be 

projected to the entire (brain-wide) ROI through the following procedure. Let 

, and the projection matrix of . 

Since a BMA-based MCMC procedure was conducted for each Z(k), considering genetic, 

clinical and demographic features, we use the MCMC samples of the regression coefficients 

of the reduced space  to reconstruct the coefficient surface on the entire ROI space 

using the following reverse projections: . Note that since these 

are linear projections, we can assess significance using the 95% upper and lower credible 

intervals for each  on the original data space to evaluate the true effect of each genetic 

covariate on the imaging values.

3. APPLICATION TO COCAINE STUDY

The iBANG-HD statistical framework described in Section 2 was used to identify ROIs that 

exhibit strong evidence of differential patterns among the candidate genetic variants and 

demographic variables. Before model fitting, we defined the ROIs using the Johns Hopkins 

University white matter atlas, which includes 48 ROIs [10]. We focused our analysis on 

voxels with FA values that exceed 0.2 to capture white matter regions of the brain. This 

resulted in a total of 138,667 voxels for downstream analysis. We examined 21 candidate 

genetic variants in 17 genes that we hypothesized might play a role in addiction vulnerability 

and which have been associated with addiction vulnerability, psychiatric morbidities, or 

neurotransmitter pathways [11]. This includes several polymorphisms in the dopamine and 

serotonin transporters and in the norepinephrine postsynaptic receptor.

The results for corpus callosum ROIs are summarized in Figure 1, where each row depicts 

the dominant magnitude and direction of the effect of cocaine consumption (top row) and 

gene GAD1a (bottom row) on FA alteration in the corpus callosum. Precedent preclinical 

and clinical studies have identified relationships between cocaine use and GAD1. Enoch et 

al. [12] showed that GAD1 expression levels in postmortem brains were related to cocaine 

use. In addition, our findings support reduction in white matter FA in cocaine users within 

corpus callosum ROIs, which is consistent with the findings of previous studies [13, 14, 15]. 
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In terms of the computation time for the entire procedure, steps I-III took approximately 75 

seconds for fitting each ROI using a standard multi-core computing server.

4. MODEL PERFORMANCE

We evaluated the performance of our BMA-based model fitting compared to that of a full 

Bayesian model (Full) with no model averaging (i.e., including all covariates in the model). 

We computed two model selection metrics as follows.

Approximate deviance information criterion (aDIC)

We used a variant of the deviance information criterion (DIC), which is a hierarchical 

modeling generalization of the Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) [16]. In BMA, we consider the marginal likelihoods of models, 

so DICj(K) in model space  is calculated as DICj(K) = 2 {mj (K) + 1} −2 {ℒj (K)}, where 

mj (K) represents the total number of regressors in model Mj, and ℒj (K) is the marginal 

likelihood of model Mj. Using the proportion of MCMC frequencies as weights, we can 

extend DIC to BMA settings as a weighted average of the model-specific DICs. Thus, aDIC 

for component K, aDICj (K), in model space  is calculated as 

, where wj is a weight determined by the MCMC 

sampling frequency of model j. To formally compare the DIC of BMA versus that of the full 

model, we used paired t–tests of the null hypothesis H0: DICBMA − DICFull = 0 versus a 

(one-sided) alternative hypothesis of the Ha: DICBMA < DICFull. The p-values are very close 

to zero (p < 2.2 × e−16) for all 48 ROIs, suggesting that BMA effectuates estimators with a 

significantly enhanced model fit versus complexity trade-offs.

Bayesian information criterion (BIC)

BIC is another model section criterion that is closely related to AIC. Similarly, for 

component K, BICj(K) of the models in model space  is derived by BICj(ν) = −2(ℒj(K)) 

+ (mj (K) + 1) × log(n), where ℒj(K) is the marginal likelihood of model Mj, and mj(K) is 

the total number of regressors in model Mj. In BMA, BIC(K) is calculated by 

, where wj is a weight computed from the MCMC sampling 

frequency of model j. Because the Full model involves a single likelihood function, BIC 

(and DIC) can be calculated without considering these weights. Again, p-values for 

comparing the methods for goodness-of-fit are very close to zero (p < 2.2 × e−16) for all 48 

ROIs, demonstrating enhanced performance for BMA.

Figure 2 compares the goodness-of-fit measures between BMA and Full models across all 

ROIs. The resultant values of both DIC and BIC are substantially lower for BMA when 

compared to the Full model, which shows enhanced goodness-of-fit for BMA was evident 

among all 48 ROIs. We highlight (in red) the corpus callosum ROIs that were depicted in 

Figure 1.
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Fig. 1. 
Average magnitude of FA alteration among ROIs that comprise the corpus callosum. 

Averages of the estimated regression coefficients are provided calculated among significant 

voxels with positive (left) and negative (right) posterior means. Color represents the extent 

of FA alteration: green indicates enhancement; red diminishment.
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Fig. 2. 
Left (right) panels depict the mean DIC (BIC) for full Bayesian (x-axis) model versus 

Bayesian model averaging (y-axis) for all 48 ROIs. Red cross: genu of corpus callosum; red 

circle: body of corpus callosum: red triangle: splenium of corpus callosum.
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