
Evaluation of Numerical Techniques for Solving the Current 
Injection Problem in Biological Tissues

Damon E. Hyde1, Moritz Dannhauer2,3, Simon K. Warfield1, Rob MacLeod2,3, and Dana H. 
Brooks.3,4

1Boston Children's Hospital and Harvard Medical School, Boston MA, 02115 USA

2SCI Institute, University of Utah, Salt Lake City, UT, 84112, USA

3Center for Integrative Biomedical Computing, University of Utah, Salt Lake City, UT, 84112, USA

4ECE Department, Northeastern University, Boston, MA, 02115, USA

Abstract

Accurate computational modeling of electric fields in the human head has become important in 

clinical research to study or influence brain functionality. While existing numerical approaches 

have been evaluated against simple geometries with known closed form solutions, the relationship 

between these approaches in more complex geometries has not been studied. Here, we compare 

the three most commonly used approaches for bioelectric modeling: the finite element method 

(FEM), the finite difference method (FDM), and the boundary element method (BEM). Using both 

isotropic and anisotropic conductivity distributions, we construct and compare bioelectric models 

for a realistic head geometry. Our results suggest that both FEM and FDM are capable of 

accurately model voltages in the brain, while computations from BEM result in significantly larger 

errors, due to the increased simplicity and implicit model assumptions.

Index Terms

Transcranial low-current stimulation; TDCS; EEG; source localization; head model; BEM; FDM; 
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1. Introduction

Accurate bioelectric modeling of head tissue is a crucial component of modern diagnostic 

and therapeutic tools based on the measurement and control of electric fields in the human 

brain. Non-invasive electrode measurements of scalp voltages with electroencephalography 

(EEG) are commonly used to study brain activity and reconstruct cortical current sources [1] 

originating from epileptic brain activity or other neurological diseases [2]. Conversely, scalp 

electrodes can also be employed to inject low-amplitude currents that modify voltage fields 

in the human head and modulate brain functionality (transcranial current stimulation (TCS), 

e.g., [3, 4]). In particular, accurate solution of the current injection problem [5, 6, 4, 7] is 

crucial for both clinical pre-surgical planning [2], and therapeutic applications [8]. Current 

injection directly models TCS and also provides the basis for efficient reciprocity-based 

computation of EEG forward solutions [9].
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Volume conduction modeling under quasi-static assumptions requires the solution of 

Poisson's equation on a geometric representation of the human head. Early head conductor 

models used concentric spheres to represent different electrically homogeneous tissue types 

(e.g., scalp, skull, and brain; [10]) and offers closed form solutions that are analytically 

computable. However, spherical models provide only a rough geometric approximation, and 

cannot incorporate the spatially varying, potentially anisotropic conductivities that are 

present in the head. Capturing the complex features of arbitrary head tissues and 

conductivities [2, 5, 11] requires discretized tissue geometries that combine spatial locations 

(nodes) and their connections (elements) to form meshes. These meshes can describe regular 

grids, or be algorithmically generated to adapt to geometric and conductivity requirements 

[2]. Unlike spherical models, closed form solutions do not exist in these geometries, 

necessitating the use of numeric solution methods. We focus here on three commonly used 

numerical approaches for realistic head modeling: the finite element method (FEM), the 

finite difference method (FDM), and the boundary element method (BEM).

Of those three approaches, the finite element method (FEM) is the mostly adaptable 

numerical method that can efficiently capture arbitrary geometries and conductivity 

distributions. The volume is typically subdivided into non-overlapping tetrahedral or 

hexahedral elements with solved voltage potentials interpolated within each element. This 

allows smooth tissue boundaries to be modeled, and adaptive meshing to reduce node 

density within large homogeneous regions, thereby reducing overall computational 

requirements.

By contrast, the finite difference method (FDM) is more easily implemented, but more 

computationally expensive when modeling complex head geometries. The computational 

mesh must be structured as a regular grid in order to construct valid difference equations at 

all points. Thus doubling spatial resolution in all directions produces an 8-fold increase in 

the number of computational nodes, regardless of tissue homogeneity. Additionally, 

restricting the computational geometry to a grid means boundary layers between tissue types 

will take on a stair-step appearance that may not accurately represent realistic tissue 

boundaries.

In contrast to FDM/FEM, the boundary element method (BEM) solves Poisson's equation 

using triangulated surfaces describing the interface layers of head tissues and assumes 

homogeneous conductivity distributions within [12]. A system matrix is generated to 

describe the relationship between voltage potentials and normal current vectors on these 

surfaces. Arbitrary source and sensor locations can be modeled with appropriately generated 

interpolation matrices mapping sources and sensors to the points associated with this head 

matrix.

Each of these numerical methods have strengths and weaknesses with regard to the 

complexity of implementation, the accuracy of the resulting solutions, and the amount of 

computation required to obtain them. While these numerical techniques have all been 

demonstrated to be accurate with respect to a spherical shell model [13, 14, 15], to our 

knowledge they have not been compared to one another in the context of modeling more 
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complex head geometries. An understanding of how these methods differ from one another 

is important in practical applications regarding accuracy and computational complexity.

In this study, we construct a patient-specific head segmentation including hard and soft skull 

bone, gray and white matter, cerebrospinal fluid (CSF) and scalp tissue, and compare the 

relative numerical accuracy of FEM, FDM, and BEM approaches to one another. Using 

metrics of differences in topography and magnitude, we evaluate the relative performance of 

each technique, with and without anisotropic conductivities when supported by the 

approach. Our results suggest that the FEM and FDM techniques produce highly similar 

answers within the brain, while the BEM, which cannot incorporate tissue anisotropies or 

complex tissue geometries, produces significantly higher relative errors.

2. Methods

2.1. Data Collection and Initial Processing

T1, T2, and diffusion weighted MRI scans were obtained from a 14 year old control subject 

using a Siemens Magnetom 3T scanner. The imaging protocol included 3d MPRAGE T1 (1 

mm isotropic resolution, 176 × 220 × 220 voxels) and T2TSE (1 mm resolution) structural 

scans. A 45 direction CUSP scan (2 mm isotropic resolution) was used to collect diffusion 

data, with tensors estimated using robust least squares. All images were coregistered to a 

common reference frame, and resampled to the 1 mm resolution of the T1 scan.

A seven tissue segmentation of the head was generated using a combination of automated 

methods and manual segmentation. A multi-atlas statistical segmentation approach was used 

to identify the intracranial cavity, and the grey matter, white matter, and cerebrospinal fluid 

regions therein [16]. Scalp tissue was segmented using a threshold approach followed by 

manual adjustments for MRI measurement noise and goggles/headphones. The skull was 

similarly extracted using thresholding, image processing operations (e.g., dilate, erode, etc.), 

and manual adjustments. Soft skull bone and sinus cavities were identified by thresholding 

within the skull compartment.

Conductivities for each tissue type in the segmentation were assigned using values 

established in the literature [4]. Scalp tissue was assigned a isotropic conductivity of 0.43 

S/m, hard bone to 0.064 S/m, soft bone to 0.0268 S/m, and sinuses to 1e-6 S/m. Within the 

intracranial cavity, cerebrospinal fluid was assigned a conductivity of 1.79 S/m, gray matter 

to 0.33 S/m, and white matter to 0.142 S/m for the isotropic model. To incorporate 

anisotropic conductivities within the white matter region, diffusion MRI was used to 

compute individual anisotropic conductivity tensors within each voxel [17]. In conjunction 

with the head segmentation described above, two separate three dimensional distributions of 

tissue conductivity are available: one with isotropic conductivities in all tissues, and one 

with anisotropic conductivities only for white matter tissue.

2.2. Numerical Modeling Approaches

Finite Element Method (FEM)—Based on the head tissue segmentation, each voxel that 

belongs to a head tissue was subdivided into 5 tetrahedral elements. The final tetrahedral 

mesh contained 18.8×106/3.7×106 elements/nodes. The mesh was used in two variants, 
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FEMi and FEMa, whereas isotropic and (an)isotropic conductivity tensors where assigned to 

tetrahedral mesh elements respectively.

Finite Difference Method (FDM)—We constructed finite difference models from the 

isotropic and anisotropic conductivity images using an approach that employs transition 

layers to permit arbitrary anisotropic conductivities within each individual voxel [18]. This 

approach places computational nodes at the corners of each volume element, and was 

constructed at the full 1 mm isotropic resolution of the structural MRI, resulting in a 

hexahedral mesh with 3.7 × 106/3.8 × 106 elements/nodes respectively. Similar to FEM, for 

the final FDM mesh, two versions were generated (FDMi and FDMa).

Boundary Element Method (BEM)—The boundary element method was implemented 

using the software tools available from the OpenMEEG project (http://openmeeg.github.io). 

The model was constructed by identifying three surfaces [19], located at the interfaces 

between scalp and air, skull and scalp, and intracranial cavity and skull. Tissues 

conductivities were assigned as 0.43 S/m for the scalp domain, 0.01 S/m for the skull 

domain, and 0.33 S/m within the brain. The symmetric BEM matrix was constructed, as well 

as the matrices necessary to appropriately map internal voltages on a 1mm grid and scalp 

injection currents at electrode locations to the BEM surfaces.

2.3. FDM/FEM/BEM - Forward problem

Despite methodological differences, each of these techniques requires solution of a linear 

system of equations to obtain interior voltage distributions as A · x = b, with A being the 

forward problem matrix, x denoting a vector of voltage potentials at each computational 

node, and b representing the current intensities injected on the scalp surface. Solutions to the 

resulting linear inverse problems were computed using SCIRun [20] with the MINRES 

algorithm (Jacobi preconditioning), and allowed to converge to a relative error of 10−9. 

Solutions were obtained for each of 72 electrode locations corresponding to the standard 

10-10 electrode configuration, with electrode Cz used as the common reference.

3. Results

A total of five head models were constructed for comparison: four modeling (an)isotropic 

conductivity distributions for finite element and difference method (FEMi, FEMa, FDMi, 

FDMa) as well as a BEM model featuring 3 layers of isotropic conductivities. The current 

injection problem was solved for each electrode in a standard 10-10 array (72 times), using 

Cz as the fixed reference electrode. A map of nodal voltages was computed for each model 

and current injection electrode pair. The relative changes in voltage distribution between 

models were evaluated using the relative difference metric (RDM), which measures changes 

in voltage topography, and the magnitude difference (MAG), which measures changes in 

overall signal magnitude ([21]). For each spatial location, these metrics were computed 

across all electrode pairs to describe overall modelling accuracy at that spatial location.

Figure 1 summarizes the differences for each possible pairing of numerical models using 

histograms of RDM and MAG. For a better visual assessment, the (min,max) range of 

voltage values (x-axis) in FEM/FDM have been depicted to be identical in contrast to higher 
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errors achieved with BEM. The lowest errors are seen when comparing the isotropic and 

anisotropic versions of the FEM and FDM methods. For all comparisons, the BEM model 

shows significantly higher RDM and MAG errors than the other models, which reflects the 

increased simplicity necessary to generate a boundary based approach. The BEM model 

lacks the highly conductive CSF region, and additionally does not differentiate between hard 

bone, soft bone, and sinus regions. Even provided a high resolution segmentation, 

identification of sufficiently accurate non-intersecting boundary models for each of these 

regions is highly challenging, and three surface models are the most commonly employed 

BEM configuration.

The spatial distribution of the RDM is displayed in Figure 2. For the FEMi, FDMa, FDMi, 

and BEM models, voltages were compared to the FEMa model in terms of RDM. These 

images demonstrate several common features seen in the computed relative differences. 

First, using isotropic conductivities, both the FEM and FDM methods produce increased 

RDM throughout the brain, in particular for deeply located points near the brain stem. The 

BEM model shows a similar spatial pattern, however, as seen in the histograms above, these 

differences are on average much higher than those seen between the FEM and FDM models. 

Peak differences for the two FDM models are seen within the scalp region, immediately 

adjacent to electrode locations, however these do not translate to local peaks within brain 

tissue due to volume conduction effects of skull/CSF (as visualized in [4]).

Of additional note are the errors seen across all models in the corpus callosum. The white 

matter is highly anisotropic in this region, producing spatial inhomogeneity in the 

conductivity. The errors are, however, also localized to the corpus callosum, and unlikely to 

significantly impact simulated EEG or TCS voltage potentials.

A corresponding set of slices depicting computed MAG values are presented in Figure 3. 

With both the FEM and FDM approaches, the models using anisotropic conductivity can be 

seen to exhibit smooth and spatially similar magnitude differences across the cortex. These 

values are greatest for deep locations near the brainstem. Both isotropic and anisotropic 

finite difference models show additional magnitude differences within the scalp tissue. 

These values correspond spatially to those seen in the RDM images, and result from the 

FDM computing significantly higher voltages at the computational nodes immediately 

adjacent to current injection points. These results suggest that, assuming FEM to be the 

more accurate approach, the FDM model may not be well suited to computational scenarios 

where sensitivities/voltages need to be accurately computed near electrode locations. Finally, 

similar to RDM, the BEM model shows significantly higher relative magnitude differences 

than the FEM and FDM models, with the largest errors located primarily within the skull 

and brain stem.

4. Conclusions

We have presented a comparison of three numerical approaches to modeling bioelectric 

propagation in a complex head model by evaluating maps of voltage potential computed for 

the current injection problem. Both the finite element and finite difference approaches 

produce voltage distributions which are highly similar, while the boundary element approach 

Hyde et al. Page 5

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



shows consistent differences in voltage intensities and produces larger topographic errors 

than the other methods. While careful construction of additional tissue boundary meshes 

may improve BEM accuracy, this is a difficult problem that complicates widespread routine 

use. The FEM and FDM, by contrast, can easily be constructed on a computational grid that 

matches available structural imaging, making implementation of these methods relatively 

straightforward. With the increasing availability of high quality MRI imaging and associated 

high resolution image segmentations, patient-specific bioelectric models incorporating this 

additional knowledge should become the standard for both research and clinical use.
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Fig. 1. 
Histogram plots of RDM and MAG error across the entire head. RDM plots are in the upper 

triangle, MAG plots in the lower.
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Fig. 2. 
Relative topographic differences (RDM) as compared to the FEMa model.
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Fig. 3. 
Relative MAG as compared to the FEMa model. Displayed MAG values were recomputed as 

exp(abs(log(MAG))) ∈ [1, inf] to better visualize relative changes.
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