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Abstract

Diffusion-weighted (DW) MRI has become a widely adopted imaging modality to reveal the 

underlying brain connectivity. Long acquisition times and/or non-cooperative patients increase the 

chances of motion-related artifacts. Whereas slow bulk motion results in inter-gradient 

misalignment which can be handled via retrospective motion correction algorithms, fast bulk 
motion usually affects data during the application of a single diffusion gradient causing signal 

dropout artifacts. Common practices opt to discard gradients bearing signal attenuation due to the 

difficulty of their retrospective correction, with the disadvantage to lose full gradients for further 

processing. Nonetheless, such attenuation might only affect limited number of slices within a 

gradient volume. Q-space resampling has recently been proposed to recover corrupted slices while 

saving gradients for subsequent reconstruction. However, few corrupted gradients are implicitly 

assumed which might not hold in case of scanning unsedated infants or patients in pain. In this 

paper, we propose to adopt recent advances in compressive sensing based reconstruction of the 

diffusion orientation distribution functions (ODF) with under sampled measurements to resample 

corrupted slices. We make use of Simple Harmonic Oscillator based Reconstruction and 

Estimation (SHORE) basis functions which can analytically model ODF from arbitrary sampled 

signals. We demonstrate the impact of the proposed resampling strategy compared to state-of-art 

resampling and gradient exclusion on simulated intra-gradient motion as well as samples from real 

DWI data.
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1. Introduction

Diffusion-weighted (DW) MRI helps reveal the organization of white matter micro-structure 

- in vivo - through being sensitive to the microscopic random motion of tissue's water 

molecules. Assuming voxel-wise homogeneous axon population, diffusion tensor imaging 

(DTI) has shown limitations in modeling brain regions with orientational heterogeneity, such 

as crossing fibers. With high angular resolution diffusion imaging (HARDI) [1], such brain 

regions can be modeled using strong gradients and long diffusion times.

Long acquisition times and non-cooperative subjects (e.g. unsedated infants, elderly people 

and patients in pain) increase the sensitivity of DW-MRI to subject motion [2]. Recently, it 

has been shown that motion artifacts are inevitable in HARDI acquisitions even under a 

controlled acquisition environment [3]. The use of high b-values exacerbate motion artifacts 

even further.

Voluntary or involuntary patient bulk movement during the application of diffusion gradients 

causes severe signal perturbation [4]. Inter-gradient (a.k.a. slow bulk) motion can cause 

misalignment among subsequent diffusion images which can be addressed via retrospective 

motion correction strategies, e.g. [5]. On the contrary, intra-gradient (a.k.a. fast bulk) motion 

causes inhomogeneous signal dropout/attenuation artifacts [6] which arises due to signal 

dephasing within the voxels [4, 2] (see Fig. 1 for an example). Such artifacts, even only 

affecting a few slices, typically lead to unusable diffusion gradient images which have to be 

discarded. Retrospective correction of such artifacts was considered challenging [4, 6] but 

finds a promising solution via q-space resampling as discussed here.

Common practices to mitigate fast motion artifacts include the identification and exclusion 
of corrupted images from further processing [4, 7] and/or scheduling for reacquisition during 

the same scan [2, 4, 8]. However, the reacquisition of motion-corrupted gradients enforces a 

hardware overhead, e.g. optical tracking systems [8], free-induction decay navigators [9] or 

volumetric navigators [10], which is not always available on current scanners. It further 

lengthens the scan acquisition time due to reacquisition and time-consuming calibration 

steps. The exclusion of entire diffusion images (a.k.a. motion scrubbing), on the other hand, 

has shown to limit the reconstruction of crossing fibers and anatomical tracts [3]. Further, it 

introduces inter-subject bias differences that would affect subsequent statistical analysis 

[11].

The effect of fast bulk motion typically appears as intensity artifacts which span a limited 

number of axial slices in a diffusion-weighted image (see Fig. 1). Recently, Dubois et al. 
[12] advocated a resampling strategy as an alternative to discarding gradients, in order to 

save as many gradients as possible for subsequent reconstruction and tractography. 

Correction is performed via estimating the intensities of the corrupted (outlier) slices in the 
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q-space through fitting a Q-ball imaging (QBI) diffusion model on the non-corrupted 

gradients using spherical-harmonics (SH) decomposition of the diffusion signal [13]. 

Nonetheless, fitting SH basis would require a relatively large number of uncorrupted 

gradients to yield an accurate diffusion model since the SH basis does not constitute a 

complete basis in 3D. Further, QBI has been shown to lack representability [14]. The Simple 

Harmonic Oscillator based Reconstruction and Estimation (SHORE) basis, on the other 

hand, has been shown to yield better diffusion representation compared to QBI [14]. With 

recent compressive sensing-based estimation approaches, e.g. [15], resampling can be 

improved to yield robust reconstructions w.r.t. the number of available uncorrupted 

gradients.

In this paper, we propose a q-space resampling scheme which makes use of the SHORE-

basis to minimize the elimination of full gradient volumes due to fast bulk motion artifacts. 

Based on synthetic experiments, we present a systematic evaluation framework to study the 

impact of the exclusion of corrupted gradients versus QBI and SHORE-based resampling 

strategies on the reconstruction of orientation distribution functions (ODFs) as well as local 

fiber orientations. Our results show promising performance in favor of SHORE-resampling. 

We further show preliminary results of the potential impact of our proposed resampling 

strategy on an infant dataset presenting severe intra-gradient motion corruption.

2. Materials and Methods

2.1. Data Acquisition

In this paper, we are interested in studying the impact of performing q-space resampling, 

SHORE-based in particular, on subsequent ODF reconstruction and local fiber orientations. 

To provide a groundtruth to compare to, we decided to rely on acquiring diffusion images 

from three healthy human subjects (males 30-40 years old) under well controlled 

environment (Autism Centers for Excellence, Infant Brain Imaging study [16])1. All subjects 

were scanned using the same scanner (a 3.0T Siemens Magnetom TrioTim scanner) at the 

same clinical site to avoid inter-subject variability under multi-scanner/site acquisition. 

Three DWI datasets (one per subject) were acquired with FOV = 20 × 20 cm, slice thickness 

= 2.0 mm, matrix size = 106 × 106 with 76 axial slices. The diffusion data consisted of one 

baseline image with zero b-value and 64 DW-images with b-value = 2000 s/mm2.

2.2. Outlier Detection

Fast bulk motion artifacts are typically manifested as slice-wise intensity attenuation, 

presenting outliers in an acquired dataset. In order to identify corrupted slices, we detect 

abrupt slice-wise intensity changes. We use normalized cross-correlation (NCC) between 

successive slices using diffusion images from all the gradients. This metric has been shown 

to be sensitive to intra-gradient motion while being insensitive to small inter-gradient motion 

[7]. It is further normally distributed which enables defining outlier slices automatically 

using the sufficient statistics of its distribution. In particular, at a slice level, a large NCC 

metric deviation from the mean NCC of all the gradients is indicative to a significant change 

1All study procedures were approved by the institutional review board, and informed, written consent was obtained for all participants.
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of intensity where such a slice is marked as corrupted. Moreover, we use the signal dropout 

score proposed in [4] which is computed for each slice in each volume. Slices with a score 

greater than 1 can be considered as a suspect for signal dropout.

2.3. Q-space Resampling for Saving Gradients

Q-space resampling amounts to estimating the lost signal during intra-gradient motion using 

a diffusion model. This is beneficial to save as many usable gradients as possible to be 

streamed into subsequent processing steps. In our recent analysis [3], we have shown the 

significant impact of excluding corrupted gradients on ODF reconstruction, tractography and 

full brain connectivity.

The main idea of resampling strategy can be outlined as follows. When the d–th slice Sd(q) 

within the gradient acquired along q wave vector in q-space is identified to be corrupted, a 

diffusion model is fitted using the respective slice in the other non-corrupted gradients. The 

diffusion signal is then interpolated using this fitted model to fill in the intensities of the 

corrupted slice (Fig. 2). Note that several gradients may be corrupted for a specific slice, as 

well several slices may be corrupted within one gradient. This motivates the use of a 

diffusion model estimation that is robust w.r.t. the number of available uncorrupted 

measurements. To mitigate under-sampling due to motion-related artifacts, we estimate 

ODFs using the compressive sensing based formulation proposed in [15] which can handle a 

limited number of samples.

The essence of fitting a diffusion model is representing the normalized DWI signal E(q) = 

S(q)/S(0) in terms of a weighted sum of orthonormal basis, where S(0) is the non-diffusion 

weighted signal (i.e. baseline). These basis functions separate the radial and spherical parts 

of q where the SHORE-basis use 3D complete orthonormal basis and is distinguished by 

their representability [14]. Merlet and Deriche [15] derived the analytical ODF solution in 

case of SHORE-basis where the diffusion ODF of voxel xd in the d–th slice and a diffusion 

gradient orientation u can be written as,

(1)

Where  is the SH function of order l and degree m and ϱlm (xd) are voxel-wise SHORE 

coefficients defined in [15]. Once the coefficients ϱlm(xd) for all voxels in the d–th slice are 

estimated using non-corrupted gradients, the corrupted slice Sd can then be resampled as,

(2)
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2.4. Reconstruction and Evaluation Metrics

We employ the constrained spherical deconvolution (CSD) technique [17] to reconstruct 

fiber orientation distributions functions (fODFs) from DWIs. The fiber response function 

was estimated from voxels with FA higher than 0.7.

To quantify similarities between groundtruth fODFs and those obtained using resampling 

outlier slices, we use the Jensen-Shannon divergence (JSD) which has been used to quantify 

differences between ODFs in various studies. Given two probability distributions P and Q, 

the JSD metric is defined as follows:

(3)

where M = (P + Q)/2 and DKL is the Kullback-Leibler divergence. In case of discrete 

distributions; the KL divergence is defined as:  where i is the 

discrete sample index. Note that in order to use the JSD, we normalize the fODFs to sum up 

to 1.

Assessing deviations in local fiber orientations is also important since their distortion may 

lead to unreliable tractography and brain connectivity results. We use the mean angular 

deviation measure θ defined as follows:

(4)

where N is the number of fibers compared, and  and  correspond to the orientations of 

fiber k [3]. Before averaging the deviations, we match the fibers, such that fiber j has the 

closest direction to fiber i. If the number of fibers is different, we compare the fibers that are 

present in both voxels. The fiber orientation were computed using DiPy2 peak extraction 

tool where we allowed up to five fiber orientations per voxel.

3. Results

In order to assess the impact of our resampling strategy compared to gradient exclusion (e.g. 

[11]) and QBI resampling [12], we simulated slice-wise artifacts as follows. We used three 

DWI datasets from healthy subjects without motion as verified by quality control [3]. 

Random intra-gradient motion was simulated by introducing different number of outlier 

gradients in a given slice by zeroing-out their intensities.

2http://nipy.org/dipy
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For a given slice, we randomly draw 100 subsets of 10%, 30%, 50% and 70% gradients 

without replacement3 to be declared as corrupted. Three reconstruction scenarios were 

considered: (1) Gradient exclusion; where ODFs were reconstructed by simply eliminating 

the corrupted gradients, (2) QBI resampling; where a voxel-wise QBI model was fitted using 

the uncorrupted gradients, and corrupted gradients were then resampled using the fitted 

model as in [12]. fODFs were subsequently reconstructed using all the gradients. (3) 

SHORE resampling; where a voxel-wise SHORE model is fitted and used to resample the 

corrupted gradients.

Fig. 3 shows the quantitative comparison of the three reconstruction scenarios on fODFs and 

dominant fiber orientation, respectively, as a function of percentage of corrupted gradients 

for different brain lobes. One can observe the effect of excluding gradients on the 

reconstructed fODFs and local fiber orientation which becomes significant with increasing 

number of corrupted gradients. This complies with our findings in [3]. Further, QBI 

resampling which is based on SH-basis is showing larger deviations from the groundtruth 

compared to SHORE resampling, especially with fewer uncorrupted measurements. The 

deviations shown in Fig. 3 were found to be statistically significant between the three 

reconstruction scenarios at significance level α = 0.01 for all percentages of corrupted 

gradients, with SHORE resampling presenting the lowest differences to groundtruth.

Fig. 4 shows the corticospinal tract of a sample low-risk infant (24-month-old) who is a 

participant of the IBIS study; an ongoing longitudinal study of infants at low and high 

familial risk for autism. Severe intra-gradient motion was detected, resulting in the exclusion 

of 26 gradients out of 64 due to on average of 3 outlier slices per gradient (minimum of 1 

slice and maximum of 9 slices). Q-space resampling saved 22 gradients where the rest were 

contaminated with other intensity artifacts. One can notice the effect of gradient exclusion 

on the resulting tract where the posterior view demonstrates how the tract is not reaching the 

cortex compared to the resampling strategies.

Further, we performed full brain tractography and atlas-guided parcellation (detailed in [3]) 

to visualize brain connectivity of the low-risk infant dataset. In Fig. 5, we use the Circos 

software [18] where the parcellated structures (refer to [3] for their full names) are displayed 

on a connectogram representing left and right hemispheres symmetrically positioned along 

the vertical axis. A normalized connectivity matrix is computed based on [3] where each 

entry corresponds to an inter-region link with thickness proportional to the entry weight. 

One can observe the tendency of gradient exclusion to loose connections within a single 

hemisphere as well as across left and right hemispheres. Further, QBI resampling does not 

show as many connections as SHORE resampling between left and right hemispheres.

These two examples are limited to showcases of single real dataset and thus do not imply a 

conclusive validation, with a large-scale evaluation planned for our future research. 

However, they may serve as demonstrations how different strategies to correct for intra-

gradient artifacts will result in differences on subsequent analysis and thus can potentially 

have a significant impact on clinical studies.

3To avoid drawing the same gradient to be corrupted more than once in the same experiment.
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Nonetheless, as a word of caution, a resampling strategy in general implicitly assumes 

minimal inter-gradient motion where a diffusion model can be estimated using all 

uncorrupted gradients for a given slice. In case of moderate-to-severe inter-gradient motion, 

resampling might introduce artifacts due to fitting the diffusion model to motion-corrupted 

gradients, resulting in discarding gradients even after resampling. Hence, reliability of the 

resampling step is affected by the severity of motion present in a given dataset. Possible 

solutions include initial inter-gradient motion correction to bring all the gradients into the 

same coordinate frame, followed by the intra-gradient resampling scheme for corrupted 

slices as presented in this paper.
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Fig. 1. 
Three consecutive slices in a diffusion gradient suffering from fast bulk motion. Notice 

signal drop-out in the middle slice which typically causes the exclusion of the full gradient 

volume from subsequent processing steps.
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Fig. 2. 
Illustration of q-space resampling strategy compared to gradient exclusion.
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Fig. 3. 
Mean and standard deviations of (top) JSD values and (bottom) dominant fiber orientation 

deviation in degrees per brain lobe as a function of percentage of corrupted gradients, shown 

for the three correction schemes (left to right).
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Fig. 4. 
Corticospinal tract of a sample low-risk infant using different reconstruction scenarios. Top 

row: sagittal view. Middle row: anterior view. Bottom row: posterior view.
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Fig. 5. 
Sample connectomic profile of infant DWI using different reconstruction scenarios. Color 

legend: L (left), R (right), WM (white matter).
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