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Abstract

We introduce the concept of “Ultrasound Spectroscopy”. The premise of ultrasound spectroscopy 

is that by acquiring ultrasound RF data at multiple power and frequency settings, a rich set of 

features can be extracted from that RF data and used to characterize the underlying tissues. This is 

beneficial for a variety of problems, such as accurate tissue classification, application-specific 

image generation, and numerous other quantitative tasks. These capabilities are particularly 

relevant to point-of-care ultrasound (POCUS) applications, where operator experience with 

ultrasound may be limited. Instead of displaying B-mode images, a POCUS application using 

ultrasound spectroscopy can, for example, automatically detect internal abdominal bleeding. In 

this paper, we present ex vivo tissue phantom studies to demonstrate the accuracy of ultrasound 

spectroscopy over previous approaches. Our studies suggest that ultrasound spectroscopy provides 

exceptional accuracy and informative features for classifying blood versus other tissues across 

image locations and body habitus.
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1. INTRODUCTION

”Ultrasound Spectroscopy” is introduced as the process of acquiring ultrasound data at 

multiple power and frequency settings to create a rich description of the underlying 

materials. We show that ultrasound spectroscopy can be used to form segmented anatomic 

images, eliminating the need to display and interpret traditional B-mode images and 

potentially improving the anatomic detail that can be revealed via ultrasound.

Our work is motivated by the growing availability of low-cost ultrasound probes that have 

the potential to revolutionize patient care in the home, in primary care offices, at the scene of 

accidents, during patient transport, and throughout hospitals. Point-of-care ultrasound 

(POCUS) applications include assessing liver cirrhosis and spine scoliosis, detecting the 
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presence of life threatening intra-abdominal bleeding, and reporting optic nerve sheath 

thickness as an indicator of traumatic brain injury.

Traditionally, ultrasound provides images of anatomy and pathology as (2D and 3D) B-mode 

images that require significant expertise for interpretation, e.g., a basic understanding of 

ultrasound physics and hands-on training with an expert to learn how to distinguish inherent 

ultrasound “noise” from organ boundaries. Even within medical facilities, ultrasound 

imaging expertise is often limited to ultrasonographers and other dedicated professionals. 

Until the challenges associated with ultrasound image interpretation can be addressed, the 

potential of low-cost ultrasound systems cannot be achieved. Ultrasound spectroscopy has 

the potential to overcome those challenges.

Extensive prior work has been dedicated to the analysis of the RF data that underlies B-

mode image generation in an effort to automate ultrasound-based tissue identification [1, 2 , 

3 ]. Those researchers have investigated a range of feature sets, speckle reduction methods, 

and other filtering methods for characterizing that RF data in the hope of developing 

segmented anatomic images. Those prior efforts, however, have failed to take full advantage 

of the imaging capabilities of ultrasound probes; they only considered RF data acquired 

using a single transmission power and frequency setting, and that power and frequency 

setting was typically chosen based on B-mode appearance, e.g., to balance depth of 

penetration with anatomic contrast and detail on the B-mode presentation.

By using features from the returned RF signals from multiple power and frequency settings, 

ultrasound spectroscopy forms a rich representation of the tissues present at each imaged 

point. The range of tissue subtleties that can be distinguished by our system is beyond the 

scope of this initial publication. In this paper, we focus on coupling ultrasound spectroscopy 

with machine learning for the automated detection of pooled blood, e.g., detecting or ruling 

out intra-abdominal bleeding as part of patient triage at the scene of a car accident, when 

blunt abdominal trauma is suspected.

Trauma is the leading cause of death among persons ages 1 to 44, and it is estimated that 

50–75% of trauma involves abdominal trauma[4]. In abdominal trauma, physical 

examination findings for abdominal injuries and concealed hemorrhage are notoriously 

unreliable and may result in increases in morbidity and mortality[5]. These challenges are 

particularly prevalent in rural environments where distance from trauma centers means that 

EMS personnel, with limited equipment and no significant ultrasound training, are primarily 

responsible for care during the critical “golden hour” after an injury.

In the following section we introduce the methods of ultrasound spectroscopy and its 

application to tissue / blood classification. In the subsequent section we present results from 

experiments involving two ex vivo tissue phantoms. Those two phantoms are used to 

simulate different body habitus and anatomic locations. Those experiments demonstrate 

ultrasound spectroscopy’s improved performance compared to traditional approaches. We 

conclude by discussing several other potential applications for ultrasound spectroscopy.
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2. METHODS

For the experiments presented in this paper, we acquired the ultrasound data using the 

Interson SeeMore general purpose abdominal probe. That probe costs $1200. It is controlled 

and returns data via a USB connection. We have developed Mac, Linux, and Android drivers 

for it. Our drivers support rapidly changing the power and frequency settings of the probe. 

The probe consists of a single crystal transducer that is moved within an arc within the 

curved shell of the ultrasound tip. This general purpose probe can be driven at 15% to 30% 

of its maximum power to produce high contrast images that are not saturated. The probe can 

be set to center its transmission frequencies at 2.5, 3.5, or 5.0 MHz.

The steps of ultrasound spectroscopy are as follows:

1. Planar Reflector Normalization [6] is used to obtain system-independent RF 

data, commonly referred to as “quantitative ultrasound” data. This enables our 

classification system to operate across different ultrasound probes. For our 

experiments, we devised and imaged a container of 50% canola oil and 50% 

water, which naturally separate and thereby form an excellent planar reflector. 

We computed the normalization function for the probe once, prior to all 

experimentation.

2. Multi-power and multi-frequency RF data collection: Via rigid mounts, data can 

be acquired at multiple power and frequency settings. However, if a probe is to 

be operated freehand, acquisition frame rates must be considered. The Interson 

probe provides twelve sweeps (i.e., frames) per second (FPS) at a single power/

frequency setting, and if three different power/frequency settings are rapidly 

alternated and combined to create a single multi-power/frequency scan, then the 

effective acquisition rate drops to approximately three FPS. Clinical ultrasound 

systems can achieve over 120 FPS, potentially providing RF data at 10 to 20 

different power and frequency settings while still supporting the imaging of 

dynamic processes. Factor analysis methods such as minimum-redundancy-

maximum-relevance (mRMR) or Hilbert-Schmidt Independence Criterion Lasso 

(HSIC Lasso) algorithms can be used to identify the power and frequency 

combinations that provide the most useful set of features for a particular 

classification problem, e.g., distinguishing blood from tissues.

3. Computing RF features: Given multiple power and frequency RF signals per 

frame, we fit Legrende and Chebyshev polynomials to each returned RF signal 

and use those polynomials’ coefficients as features, in addition to using 

traditional RF signal features such as slope (S), intercept (I), and backscatter 

(BS) coefficients [6]. Polynomial fitting is accomplished using Python and ITK1, 

and those libraries contain a variety of other signal feature extraction methods 

that could be used to characterize the RF signals, e.g., fractal dimension 

measures.

1www.itk.org
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4. Machine learning for classification: A random forest classifier (as implemented 

in scikit-learn2) is then used to classify the feature vectors. Not shown in the 

results presented in this paper, we evaluated 10+ classification methods, and 

random forests outperformed all others.

3. EXPERIMENTS AND RESULTS

Two ex vivo tissue phantoms were used to compare variations on ultrasound spectroscopy 

with traditional approaches to ultrasound-based tissue labeling. The first phantom was used 

to generate training data only. The phantom consisted of (top to bottom) layers of bovine 

steak, bovine liver, sheep blood, and bovine steak. The second phantom was only used to 

generate testing data, it did not contain any bovine liver, see Fig. 1 This second phantom 

simulated encountering a body location / habitus that was not included during training, and 

thereby provides a measure of the insensitivity of the classification system to changes in the 

thickness and type of intervening tissues for blood detection.

Ultrasound spectroscopy data was collected at two different power settings (15% and 30%) 

and three different frequency settings (2.5, 3.5, and 5.0 MHz). We computed the linear 

reflector normalization for the probe, and then at each of the six different settings, we 

recorded and normalized two scans from the first phantom and a single scan from the second 

phantom.

Using the B-mode images from each scan, we hand-labeled Steak, Liver, and Blood regions 

in the scan. For each of the six RF data recordings at each pixel within those labeled regions, 

we computed 7 Legrende polynomial coefficients, 7 Chebyshev polynomial coefficients, RF 

data slope, RF data intercept, and RF data backscatter. We also computed B-mode value, but 

we did not use it as a feature in our ultrasound spectroscopy classifications. This produced 

102 possible ultrasound spectroscopy features at each pixel. Combined with the hand-

labeled classes, 10+ classifiers were evaluated, and it was determined that random forest 

classification produced the best blood-versus-other classification results for most of the sets 

of features considered.

Results from the various feature sets are given in Table 1 . In the first row, the B-mode 

values from the six different power and frequency settings are used as the feature vector. 

That produced a true positive rate of only 0.565. In the second and third rows, the 15% 

power and 2.5 MHz. frequency setting was chosen, since its features were judged to provide 

the most information in classifying blood-versus-other. At 15/2.5, the use of backscatter, 

slope, and intercept provided good performance, but the use of all 102 features offered an 

additional 40% reduction in error. When all features at all frequencies are considered, error 

drops to 1.51% – nearly an order of magnitude improvement over traditional B-mode 

interpretation for blood classification.

To gain more insight into the role of multi-frequency and multi-power acquisitions and the 

role of detailed RF data features such as Legrende and Chebyshev coefficients, we used a 

2http://scikit-learn.org/
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greedy feature selection strategy with an information gain metric [7]. That analysis lead to 

determining the 14 most informative features for blood-versus-other classification, starting 

from the 102 possible features. The resulting collection of 14 selected features is listed in 

Table 2. Intersting observations are that (1) every power and frequency setting is 

represented; (2) nearly every Chebyshev and Legrende coefficient degree is used, albeit from 

different powers and frequencies; and (3) the traditional features of RF data slope, intercept, 

and backscatter are not ranked among the top fourteen most informative features, at any 

power or frequency setting.

4. CONCLUSIONS

Ultrasound spectroscopy involves planar reflector normalization, RF data recordings at 

multiple powers and frequencies, and features based on approximating the returned RF 

signals with high degree polynomials. Combined with machine learning methods, it provides 

a quantitative analysis of anatomy that outperforms previous approaches to ultrasound-based 

classification of pooled blood versus tissue. Furthermore, the use of multiple powers and 

frequencies as well as detailed descriptors of the RF signal (e.g., Chebyshev polynomial 

coefficients) are ranked as the most informative features, compared to traditional RF data 

features, for blood classification.

Beyond classification, in Fig. 1 we show how generating an image from a single feature can 

present an alternative view of anatomy that is perhaps easier to interpret than a b-mode 

image. Future work will explore discriminant analysis methods to determine the linear 

combination of features that produce images that best distinguish blood from other tissues, 

that simplify the identification of liver lesions, that enable the assessment of liver cirrhosis, 

or that improve cross-modality registration accuracy.
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Fig. 1. 
Top-Row: Training images came from a phantom with layers of steak, cow liver, sheep’s 

blood, and steak. Bottom-Left: Hand-labeling was used to generate training data from two 

acquisitions of the training phantom at two different positions, at multiple power and 

frequency settings. This image shows the hand-labeled classes overlaid on the Chebyshev 
Coef 3 feature image from the RF signal at power 15 and frequency 2.5 MHz which greedy 

feature selection (See Tbl. 2) selected as the most informative for blood-vs-not-blood. 

Bottom-Right: Testing images came from a phantom that did not contain liver - thereby 

simulating a different imaging location and body habitus.
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Table 2

Greedy information gain feature selection chose these 14 features for blood-vs-not-blood classification. 

Ordered by power and frequency.

Pwr Freq Feature

15 25 Chebyshev Coef 3

15 35 Chebyshev Coef 4

15 35 Legendre Coef 2

15 35 Legendre Coef 6

15 50 Chebyshev Coef 3

15 50 Chebyshev Coef 5

15 50 Legendre Coef 3

30 25 Chebyshev Coef 4

30 25 Legendre Coef 0

30 25 Legendre Coef 3

30 35 Chebyshev Coef 4

30 35 Legendre Coef 2

30 50 Chebyshev Coef 3

30 50 Legendre Coef 4
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