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Abstract

Quantitative analysis of whole slide images (WSIs) in a large cohort may provide predictive 

models of clinical outcome. However, the performance of the existing techniques is hindered as a 

result of large technical variations (e.g., fixation, staining) and biological heterogeneities (e.g., cell 

type, cell state) that are always present in a large cohort. Although unsupervised feature learning 

provides a promising way in learning pertinent features without human intervention, its capability 

can be greatly limited due to the lack of well-curated examples. In this paper, we explored the 

transferability of knowledge acquired from a well-curated Glioblastoma Multiforme (GBM) 

dataset through its application to the representation and characterization of tissue histology from 

the Cancer Genome Atlas (TCGA) Breast Invasive Carcinoma (BRCA) cohort. Our experimental 

results reveals two major phenotypic subtypes with statistically significantly different survival 

curves. Further differential expression analysis of these two subtypes indicates enrichment of 

genes regulated by NF-kB in response to TNF and genes up-regulated in response to IFNG.
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 1. INTRODUCTION

Tumor histology provides a detailed insight into cellular morphology, organization, and 

heterogeneity. For example, tumor histological sections can be used to identify mitotic cells, 

cellular aneuploidy, and autoimmune responses. More importantly, if tumor morphology and 

architecture can be quantified on large histological datasets, then it will pave the way for 

constructing histological databases that are prognostic, the same way that genome analysis 

techniques have identified molecular subtypes and predictive markers. Genome-wide 

analysis techniques (e.g., microarray analysis and next generation sequencing (NGS)) have 

the advantages of standardized tools for data analysis and pathway enrichment, which 

enables hypothesis generation for the underlying mechanism. On the other hand, histological 
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signatures are hard to compute because of the technical variations and biological 

heterogeneities in the stained histological sections; however, they offer insights into tissue 

composition as well as heterogeneity (e.g., mixed populations) and rare events.

Histological sections are often stained with hematoxylin and eosin stains (H&E).Traditional 

histological analysis is performed by a trained pathologist through the characterization of 

phenotypic content, such as various cell types, cellular organization, cell state and health, 

and cellular secretion. One of the main technical barriers for processing a large collection of 

histological data is that the color composition is subject to technical variations (e.g., fixation, 

staining) and biological heterogeneities (e.g., cell type, cell state) across histological tissue 

sections, especially when these tissue sections are processed and scanned at different 

laboratories. Here, a histological tissue section refers to an image of a thin slice of tissue 

applied to a microscopic slide and scanned from a light microscope. From an image analysis 

perspective, color variations can occur both within and across tissue sections. For example, 

within a tissue section, some nuclei may have low chromatin content (e.g., light blue 

signals), while others may have higher signals (e.g., dark blue); nuclear intensity in one 

tissue section may be very close to the background intensity (e.g., cytoplasmic, 

macromolecular components) in another tissue section.

In this paper, we aim to explore the transferability of knowledge acquired from a well-

curated GBM dataset through its application to the phenotypic characterization of breast 

invasive carcinoma. We suggest that, unsupervised feature learning is capable of generating 

transferable knowledge in tissue histology that can potentially be shared across cohorts with 

different tumor types, which provides an effective solution when well-curated examples are 

not available.

Organization of this paper is as follows: Section 2 reviews related works. Section 3 describes 

the details of our proposed approach. Section 4 elaborates the details of our experimental 

setup, followed by detailed discussion on the experimental results. Lastly, section 5 

concludes the paper.

 2. RELATED WORK

Several outstanding reviews for the analysis of histology sections can be found in [1, 2]. 

From our perspective, four distinct works have defined the trends in histology image 

analysis: (i) one group of researchers proposed nuclear segmentation and organization for 

tumor grading and/or the prediction of tumor recurrence [3, 4, 5, 6]. (ii) A second group of 

researchers focused on patch level analysis (e.g., small regions) [7, 8, 9, 10], using color and 

texture features, for tumor representation. (iii) A third group focused on block-level analysis 

to distinguish different states of tissue development using cell-graph representation [11, 12]. 

(iv) Finally, a fourth group has suggested detection and representation of the auto-immune 

response as a prognostic tool for cancer [13].

The major challenge for computational histopathology is the large amounts of technical 

variations and biological heterogeneities in the data [14], which typically results in 

techniques that are tumor type specific. To overcome this problem, recent studies have 
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focused on either fine tuning human engineered features [7, 8, 14, 15], or applying automatic 

feature learning [16, 17, 18], for robust representation.

 3. APPROACH

The proposed approach for tissue phenotypic characterization and integrated analysis 

includes: transferable knowledge learning through predictive sparse decomposition (PSD), 

tissue phenotypic representation and subtyping via consensus clustering, survival analysis 

and genomic association.

 3.1. Transferable Knowledge Learning

Given many of the shared visual concepts among different tumor types (e.g., cell), we 

employed predictive sparse decomposition (PSD) [19] to learn transferable knowledge (i.e., 

sparse tissue morphometric patterns) from a well-curated GBM dataset [15, 17, 18], as 

shown in Figure 1. Unlike many other unsupervised feature learning algorithms [20, 21, 22, 

23], the feed-forward feature inference of PSD is very efficient, as it involves only element-

wise nonlinearity and matrix multiplication, which is crucial to the characterization and 

representation of large cohort of WSIs.

Given X = [x1, …, xN] ∈ ℝm × N as a set of vectorized image patches, we formulate the PSD 

optimization problem as:

(1)

where B ∈ ℝm × h is a set of the basis functions; Z = [z1, …, zN] ∈ ℝh × N is the sparse 

feature matrix;W ∈ ℝh × m is the auto-encoder; G = diag(g1, …, gh) ∈ ℝh × h is a scaling 

matrix with diag being an operator aligning vector [g1, …, gh] along the diagonal, σ(·) is the 

element-wise sigmoid function and λ is a regularization constant. The goal of jointly 

minimizing Eq. (1) with respect to the quadruple 〈B, Z, G, W〉 is to enforce the inference of 

the nonlinear regressor Gσ(WX) to be resemble to the optimal sparse codes Z that can 

reconstruct X over B [19]. An iterative process is employed for optimizing Eq. (1), and the 

details can be found in our previous publication [17].

 3.2. Tissue Phenotypic Representation and Subtyping

With the transferable knowledge derived from the GBM dataset through the unsupervised 

feature learning procedure, as shown in Figure 1, each image patch (i.e., 20×20 sub-image) 

in the WSI can be represented by a sparse feature vector z. Each WSI is then represented by 

summarizing the feature vectors of all non-overlap, non-background and non-border patches 

within the WSI (e.g., moments of each individual feature dimension, etc.).
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Consensus clustering [24] is performed for identifying subtypes/clusters across tissue 

sections of TCGA BRCA cohort. The input of consensus clustering are the summarized 

features from all tissue sections. Consensus clustering aggregates consensus across multiple 

runs for a base clustering algorithm. Moreover, it provides a visualization tool to explore the 

number of clusters in the data, as well as assessing the stability of the discovered clusters.

 3.3. Integrated Analysis with Genomic Signatures and Clinical Outcomes

Tissue phenotypic subtypes derived from consensus clustering of learned features are then 

associated with clinical outcomes, genomic/methylation subtypes and molecular data for 

integrated analysis. The Kaplan-Meier estimator, a non-parametric statistic, is used to 

estimate the survival function from clinical outcomes. Log-rank test, a nonparametric test 

designed for data of right skewed and censored, is used to compare the survival distributions 

of two subtypes. Fisher’s exact test is used for the enrichment analysis between tissue 

phenotypic subtypes and genomic/methylation subtypes. Linear models are used for 

assessing differential expression of genes between tissue phenotypic subtypes.

 4. RESULTS AND DISCUSSION

The proposed approach has been applied on the TCGA BRCA cohort, including 273 tissue 

sections from 273 patients each of which has the labels of both the 50-gene PAM50 subtypes 

and methylation subtypes [25]. For the quality control purpose, background and border 

portions of each whole slide image were detected and removed from the analysis.

 4.1. Consensus clustering

The representation for each tissue section consists of a 1024-dimensional feature (average 

sparse feature over all non-overlap, non-background and non-border patches in the tissue 

section). Hierarchical clustering was chosen as the cluster algorithm for consensus 

clustering, where the distance function is Pearson correlation. The procedure was run for 

500 iterations with a sampling rate of 0.8 on 273 tissue sections. Consensus clustering is 

implemented through the R Bioconductor ConsensusClusterPlus package. Consensus 

clustering matrices with 2 to 7 clusters are shown in Figure 2, where the matrices with 2 to 4 

clusters reveal different levels of similarity among tissue sections and matrices with 5 to 7 

clusters provide little further details. Interestingly, the top left cluster in the matrices with 2 

to 4 clusters remains the same, while the bottom right samples are further divided into sub-

clusters.

 4.2. Survival analysis and genomic association

Survival analysis is implemented through the R survival package. Figure 3 shows the 

Kaplan-Meier plot for two subtypes associated with patient survival from the two-cluster 

consensus clustering result. The log-rank test p-value of 0.0005 indicates that the difference 

between survival times of these two subtypes is statistically significant. Due to the short 

median overall follow up and the small number of overall survival events, survival analysis 

was not performed on the three-cluster and four-cluster consensus clustering results.
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Figure 4 and 5 show tissue phenotypic subtypes and corresponding 50-gene PAM50 

subtypes / methylation subtypes [25] for each tissue section in the consensus clustering 

results of two, three and four clusters, respectively. Fisher’s exact test reveals no enrichment 

between tissue phenotypic subtypes and 50-gene PAM50 subtypes / methylation subtypes.

Fifty-six differential expressed genes between the two subtypes, as shown in Figure 4d, 

indicates enrichment of genes regulated by NF-kB in response to TNF and genes up-

regulated in response to IFNG (via MSigDB [26]). TNF refers to a group of cytokines that 

induce proliferation, and inflammation and apoptosis depending upon the adaptor proteins. It 

is shown that TNF-α acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, 

JNK, Akt and NF-kB-dependent pathways [27]. IFNG is an inflammatory cytokine that 

induces the expression and function of IRF1, a tumor suppressor gene that can increase 

antiestrogen responsiveness. Observations also support the exploration of clinical trials 

combining antiestrogens and compounds that can induce IRF1 for the treatment of some ER-

positive breast cancers [28].

 5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a knowledge sharing approach based on unsupervised feature 

learning (i.e., predictive sparse decomposition) for tissue phenotypic characterization, 

followed by phenotypic subtyping and genomic and clinical association. The knowledge 

(i.e., sparse tissue morphometric patterns) was initially learned from a well-curated GBM 

dataset, and then transferred to the TCGA BRCA cohort. Experimental results indicate no 

enrichment between the tissue phenotypic subtypes and 50-gene PAM50 subtypes / 

methylation subtypes. Instead, they reveal two major phenotypic subtypes with statistically 

significantly different survival curves. Further differential expression analysis of these two 

subtypes indicates enrichment of genes regulated by NF-kB in response to TNF and genes 

up-regulated in response to IFNG.

We suggest that such an approach can be potentially applied for many other biomedical 

applications when well-curated examples are not easily available. And our future work will 

focus on (i) validating our findings on breast invasive carcinoma with an independent cohort; 

and (ii) validating our approach as well as the transferability of the pre-built knowledge (i.e., 

sparse tissue morphometric patterns) with other biomedical applications, such as the study of 

biological responses to environmental challenges.
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Fig. 1. 
Computational workflow of unsupervised feature learning with predictive sparse 

decomposition (PSD).
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Fig. 2. 
Consensus clustering matrices of 273 TCGA patients with BRCA for cluster number of N = 

2 to N = 7 based on tissue morphometric features.
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Fig. 3. 
Kaplan-Meier plot for the two subtypes associated with patient survival from the two-cluster 

consensus clustering result (181 patients in Subtype 1 and 92 patients in Subtype 2).
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Fig. 4. 
Coordinated analysis for two-cluster consensus clustering result: a. Phenotypic subtypes; b. 

50-gene PAM50 subtypes [25]; c. Methylation subtypes [25]; d. Genes that are differently 

expressed between the two phenotypic subtypes (FDR-adjusted p-value< 0.05).
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Fig. 5. 
Coordinated analysis for three-cluster and four-cluster consensus clustering results.
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