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Abstract

Thalassemia is a congenital disorder of hemoglobin synthesis which can lead to thromboembolic 

events and stroke in the brain. In this work we propose to use a functional connectivity model to 

discriminate between control and diseased subjects. Our connectivity measure is based on 

functional magnetic resonance imaging, and hence common variations of the blood oxygenation 

level in spatially distant areas. Analyzing this connectivity could highlight abnormal neuronal 

activation and provide us with a descriptor (bio-marker) of the disease. To estimate the 

connectivity, we propose a robust learning scheme based on the graphical lasso model, whose 

hyperparameter is validated within a cross-validation scheme. To analyze model fit, we transfer the 

mean connectivity from the control group to the thalassemic patient group. Our null hypothesis is 

that the model learned on control subjects is perfectly adequate (in the maximum likelihood sense) 

to describe the patients. The results of the permutation test suggest that the some patients with 

thalassemia do not have the same connectivity structure as the control.
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1. INTRODUCTION

β-thalassaemia is a congenital disorder of hemoglobin synthesis that is characterized by a 

decreased production of globin β-chains and the subsequent accumulation of unpaired α-

globin subunits [1]. The presence of this globin precipitates also leads to increased red blood 

cell destruction (hemolysis), resulting in chronic anemia. The patients require regular blood 

transfusion and iron chelation therapy. Observational studies showed a high prevalence of 

thromboembolic events, which are mostly venous and their occurrence increases with age [1, 

2]. Its effect on the brain has not been widely studied and the incidence of strokes has only 

recently been established in [2]. 37% of patients showed asymptomatic brain damage, which 

involved the subcortical white matter in all patients on magnetic resonance imaging (MRI) 

[3].

In addition to these investigations into structural MRI, analysis of functional connectivity 

remains promising as a neuroimaging marker of thalassemia. Indeed, functional MRI (fMRI) 
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studies have found that spontaneous low-frequency (0.009 ≤ f ≤ 0.08 Hz) blood oxygenation 

level-dependent contrast fluctuations measured during rest showed high temporal coherence 

between functionally related brain regions [4]. This result suggests that fMRI might also be 

appropriate for examining functional connectivity. Mathematically, graph theory is 

employed to evaluate fMRI brain network connectivity, which models the brain as a 

complex network composed of nodes associated with regions of interest, and edges 

representing functional connectivity between nodes. Various statistical methods have been 

adopted to infer the latent connectivity from neuroimaging data. One of the techniques is 

partial correlation analysis (normalized version of the inverse covariance matrix), which 

provides a much better modelization of brain connectivity than simple correlation analysis. 

The inverse covariance matrix can be considered a faithful representation of a Gaussian 

graphical model. Indeed a zero entry corresponds to conditional independence of a pair of 

nodes, given their complement in the network. This constraint is also valid because 

neurological findings have demonstrated that a brain region usually only interacts directly 

with a few other brain regions. We will here use graphical lasso to estimate a such sparse 

network [5]. Extension of these techniques estimate intra-subject brain connectivity model 

under the assumption that they have the same structure can be found in all individuals in the 

group [6, 7, 8]. It has proven sensitive to correctly detect existing connections in a graph 

structure under some mild assumptions. Different patterns of brain connectivity have been 

shown in Alzheimer’s disease [9].

In this paper, starting from a correlation metric, a robust learning scheme is proposed based 

on a graphical Lasso model whose hyperparameter is fixed within a crossvalidation scheme, 

in order to estimate a descriptor of reference brain activation. Thalassemia patients could be 

affected by strokes, altering some connectivity patterns. Given this variability of the damage 

and the abnormal blood flow in thalassemia, we hypothesize that at least for some patient’s 

abnormalities in connectivity patterns exist in patients as compared to control subjects. 

Based on the Gaussian likelihood model, a network cross-validated on control subjects is 

individually verified on thalassemia patient data. Our null hypothesis is that such a model 

learned on control subjects is perfectly adequate to describe patients. Permutation tests are 

used to assess the p-value of every patient. The statistical method is tested on a cohort of 20 

control subjects and 11 thalassemia patients.

2. MATERIALS

2.1. Dataset

This study includes thalassemia patients and control subjects that were recruited from the 

Children’s Hospital Los Angeles between January 2012 and September 2015. The 

institutional review board approved the protocol and written informed consent was obtained 

from all subjects. All participants underwent MR imaging by using a 3T Philips Achieva. 

The 3D T1-weighted images were acquired covering the whole brain (160 sagittal slices) 

with TR = 8.20 s, TE = 3.77 ms, flip angle = 8, in-plane resolution = 256 × 256, FOV = 256 

mm × 224 mm and thickness/gap =1.0/0 mm). During resting-state fMRI scanning, subjects 

were instructed to close their eyes, keep still as much as possible, not to think of anything, 

and not to fall asleep. The functional images were acquired with the following parameters: 
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TR = 2000 ms, TE = 50 ms, flip angle = 90, in-plane resolution = 96 × 96, FOV = 220 mm × 

220 mm, 26 axial slices, thickness/gap= 5/0 mm. A total of 240 volumes were collected in 8 

minutes. At this stage of the experiment, the population sample consists of 11 patients with 

thalassemia and 20 control volunteers, but data acquisition is ongoing.

2.2. Preprocessing steps

Imaging data was first preprocessed with the FMRIB Software Library (FSL), using 

standard spatial preprocessing steps: images were (1) slice-time corrected, (2) realigned to 

remove physiological motion with FSL’s MCFLIRT, (3) intensity normalized and (4) 

smoothed with a 6-mm Gaussian kernel. The fMRI images were co-registered with their 

anatomical counterpart using FSL and linearly transformed to the Montreal Neurological 

Institute (MNI) template space. After fMRI preprocessing, in order to remove residual 

motion, the parameters estimated by FSL’s MCFLIRT, as well as theirs derivatives, were 

used as regressors, computed by backwards differences (12 regressors). Moreover, the 

physiological noise was also reduced using other nuisance regressors that were calculated by 

the CompCor [10] method as implemented in Nilearn (http://nilearn.github.io/). These 5 

regressors correspond to the principal components from noisy regions-of-non-interest, such 

as white matter, cerebral spinal fluid and out-of brain.

2.3. Regions of interest selection

In order to analyze functional connectivity, the resting state data was parcellated into 39 

regions using the multi-subject probabilistic atlas from [11]. It has been shown to provide 

good support to define regions of interest in fMRI studies, and it is known that the the choice 

of the regions of interest (ROI) that define the nodes of the graphs has a great influence on 

the assessment of the connectomes. Regional mean time-series are estimated by averaging 

the fMRI signals over all voxels within each atlas region. From these regional mean time-

series, we can compute the empirical correlation matrix, denoted S(k), for each participant. 

We also show an example of this matrix used for learning the model, as described in Figure 

1. Note that it displays features with high connectivity in the upper left part, corresponding 

to the default mode network.

3. METHOD

In this section, we present a robust learning scheme, through which we estimate a descriptor 

of the reference functional connectivity structure. A sparse modeling framework is employed 

based on a graphical Lasso model associated with a cross-validation scheme. Then, based on 

the Gaussian likelihood model, a mean network estimated with control subjects is applied to 

the thalassemia patient data. Permutation tests are used to assess the sensitivity and 

specificity of our model.

3.1. Learning model

Starting from a training set of K control subjects, the graphical Lasso model is represented 

through a precision matrix, Θ, corresponding to the inverse correlation matrix, Θ = S−1. We 

assume that the variables have a multivariate Gaussian distribution with covariance S. If the 
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edge linking nodes j and i is absent, then nodes j and i are conditionally independent given 

all others, and the corresponding entry of the inverse covariance matrix, Θ, is zero.

The estimation of Θ is based on 3 steps: i) the set of precision matrices {Θ(1), ⋯, Θ(K−1)} 

conditional on a value λ are first estimated. ii) λ is fixed through a 10-fold crossvalidation 

(each subset of K − 1 controls are validated on 1 control with K = 10) iii) The model is 

tested on the K-th subject by calculating the likelihood of the patient data in the model with 

parameter Θ, the mean precision.

For step i), to estimate a sparse symmetric positive definite parameter, Θ(K), we maximize 

the penalized Gaussian log-likelihood, for all K − 1 subjects [12]:

Θ(k) = arg min
Θ(k) > 0

Trace(Θ(k)S(k)) − logdet(Θ(k)) + λ‖Θ(k)‖1 (1)

over a grid of values for the penalization parameter λ and where S(k) is the covariance 

matrix of the k-th subject. Note that log det and Trace correspond to the logarithm of the 

determinant and the trace of the matrix, respectively. The operator || ||1 is the l1-norm matrix. 

The parameter λ is a penalty parameter, which controls the amount of sparsity. The block-

coordinate descent optimization algorithm proposed by Friedman et al. [5] is used, which 

ensures the symmetric positive definiteness of the estimate Θ(K), during the optimization 

procedure.

3.2. Cross-validation

To train the model, a leave-one-out cross-validation scheme is used. A subject is extracted 

from the training set as a validation subject, and the model is trained (i.e. estimate the model 

parameter λ is estimated) with the remaining K − 1 participants. This is repeated such that 

each control subject is used as a validation sample. We report the optimal parameter λ, that 

maximizes the mean log-likelihood over all K-folds.

Using this optimal λ for every subject k, the precision matrix, Θk is estimated again. From 

{Θ1, ⋯, ΘK−1}, the Frechet mean is used to estimate the reference connectivity model, Θ
[6].

3.3. Permutation test

The model determined above to estimate healthy brain activation is applied to the Q data of 

thalassemia patients. Our null hypothesis (H0) is that the model learned on control subjects 

is perfectly adequate (in the maximum likelihood sense) to describe the patients. For each of 

the patients (with labels q = 1, …, Q), the log-likelihood in a Gaussian distribution with 

mean 0 and the covariance Θ is calculated. We permute the data by shuffling the subjects’ 

labels (control or patient), and then calculate the same log-likelihood statistics for every 

permutation. Finally, the statistical significance, expressed in terms of a p-value, is 

calculated as the fraction of likelihood that is at least as high as the original (non-permuted) 

statistic, which was derived from the correctly labeled data.
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4. RESULTS

First, the healthy brain functional connectivity structure was estimated from the 12 control 

subjects. A grid value of λ from 0 to 1 was used and a leave-one-out scheme was repeated K 
= 12 times. Figure 2 displays the inverse correlation model, giving a descriptor of reference 

activation, obtained by the learning scheme. Compared to the covariance matrix of a subject, 

displayed in Figure 1, we observe that the precision matrix is more sparse, as expected. 

Indeed, only direct connections between two ROIs are represented in the inverse covariance 

matrix. In addition, graphical representation of the connection for the atlas-based ROIs are 

shown in Figure 3. It displays the highest scores related to the homologous interhemispheric 

connections; in other words, each region tends to be highly correlated with the 

corresponding region in the opposite hemisphere. The sagittal view of the Figure 3 shows 

the connections between the medial prefrontal cortex and the precuneus, implicated in well 

known networks such as the default mode network.

Then, the model estimated previously is applied to the Q = 11 thalassemia patient data. Our 

null hypothesis is that such a model learned on control subjects is perfectly adequate (in the 

maximum likelihood sense) to describe thalassemia patients. Three patients had a p-value 

inferior to 5%, leading to the conclusion that H0 is rejected. The results of the permutation 

test suggest that the some patients with thalassemia do not have the same connectivity 

structure as the controls. Higher p-values (p-value>0.1) were observed for 7 patients, which 

means that the likelihood of these data in the model do not allow to reject H0. Our 

classification results were compared with the one obtained by a correlation matrix. The p-

values of all subjects are high. This model seems not to show differences between the 

patients. Significant correlation was found between p-values and global CBF estimations.

5. CONCLUSION

In this paper, we proposed a robust learning scheme based on a graphical Lasso model to 

estimate the reference brain functional connectivity structure. Based on a permutation test, 

we showed that the model learned on control subjects is not adequate to describe several 

thalassemia patients. The results of the permutation test suggest that three thalassemia 

patients do not have the same connectivity structure as compared to reference subjects. 

Indeed, the strokes and abnormal blood flow in thalassemia patients can affect brain 

activation patterns. This method may help to identify the patients at greatest risk for cerebral 

strokes and for neurocongitive dysfunctions. This study will provide insight into risk factors 

for cerebrovascular disease in SCD patients, which will facilitate improved neuroprotection 

and quality of life. Future works will consider the inclusion of individual’s clinical variables, 

such as stroke, hemoglobin levels and neurocognitive functioning and will explore their 

impact on the connectivity patterns. Finally, this is an ongoing study, and we plan to pursue 

it on a larger database.
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Fig. 1. 
Connectivity matrix from the 39 regions: each coefficient in the matrix represents the 

correlation coefficient between two ROIs [7].
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Fig. 2. 
Inverse correlation model, giving a descriptor of reference brain activation, computed by the 

procedure described in sections 3.1 and 3.2.
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Fig. 3. 
Graphical representation of the reference connectivity model.
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